HESI A2
Chemistry HESI A2 Quizlet
1. What type of intermolecular force is a dipole attraction?
- A. Strong
- B. Weak
- C. Medium
- D. Very strong
Correct answer: B
Rationale: A dipole attraction is considered a weak intermolecular force. It occurs between molecules with permanent dipoles, where the positive end of one molecule is attracted to the negative end of another molecule. While dipole-dipole interactions are stronger than dispersion forces, they are weaker than hydrogen bonding or ion-dipole interactions. Therefore, the correct answer is 'Weak.' Choices A, C, and D are incorrect because dipole attractions are not classified as strong, medium, or very strong intermolecular forces, but rather fall into the category of weak intermolecular forces.
2. What is a balanced equation?
- A. A description where reactants and products are not equal
- B. An equation where the number of each type of atom is the same on both sides
- C. A chemical formula showing only reactants
- D. An equation without coefficients
Correct answer: B
Rationale: A balanced equation is one where the number of each type of atom is the same on both sides, fulfilling the law of conservation of mass. This principle ensures that the total number of atoms of each element is equal in both reactants and products, signifying that no atoms are created or destroyed, but rather rearranged. Choice A is incorrect because a balanced equation has equal numbers of atoms in the reactants and products. Choice C is incorrect as a balanced equation includes both reactants and products. Choice D is incorrect because coefficients are essential in balancing equations by adjusting the number of atoms present.
3. What is the name of the group of elements that contains chlorine, fluorine, and iodine?
- A. Alkali metals
- B. Halogens
- C. Transition metals
- D. Noble gases
Correct answer: B
Rationale: The correct answer is 'Halogens.' Halogens are a group of elements that include chlorine, fluorine, and iodine. These elements are part of Group 17 in the periodic table. They share similar properties such as high reactivity and the ability to readily form compounds. Choice A, 'Alkali metals,' is incorrect as alkali metals are found in Group 1 of the periodic table, which includes elements like lithium and sodium. Choice C, 'Transition metals,' is incorrect as transition metals are located in the middle section of the periodic table, not in Group 17. Choice D, 'Noble gases,' is incorrect as noble gases are in Group 18 and include elements like helium and neon, which are chemically inert.
4. A salt solution has a molarity of 5 M. How many moles of this salt are present in 0 L of this solution?
- A. 0
- B. 1.5
- C. 2
- D. 3
Correct answer: A
Rationale: Molarity is defined as the number of moles of solute per liter of solution. A molarity of 5 M indicates there are 5 moles of salt in 1 liter of the solution. Since the volume of the solution is 0 liters, multiplying the molarity by 0 liters results in 0 moles of salt (5 moles/L x 0 L = 0 moles). Therefore, the correct answer is 0. Option B, 1.5, is incorrect because it doesn't consider the volume being 0 liters. Options C and D, 2 and 3 respectively, are also incorrect as they do not account for the zero volume of the solution. Hence, there are no moles of salt present in 0 liters of the solution.
5. Which chemical reaction involves the breaking of a compound into its components?
- A. Decomposition reaction
- B. Combustion reaction
- C. Neutralization reaction
- D. Single displacement reaction
Correct answer: A
Rationale: The correct answer is A: Decomposition reaction. A decomposition reaction involves breaking down a compound into its components. During this reaction, a single compound breaks down into two or more simpler substances. This process is the opposite of a synthesis reaction where multiple substances combine to form a more complex compound. Choices B, C, and D are incorrect because combustion reaction involves burning a substance in oxygen, neutralization reaction involves the reaction between an acid and a base to form water and a salt, and single displacement reaction involves an element displacing another in a compound.
Similar Questions
Access More Features
HESI A2 Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access
HESI A2 Premium
$149.99/ 90 days
- Actual HESI A2 Questions
- 3,000 questions with answers
- 90 days access