ATI TEAS 7
TEAS 7 practice test free science
1. What happens to the density of a gas when its temperature increases at constant pressure?
- A. It increases.
- B. It decreases.
- C. It remains the same.
- D. Information is insufficient.
Correct answer: B
Rationale: When the temperature of a gas increases at constant pressure, the average kinetic energy of the gas molecules increases. This leads to the gas molecules moving faster and spreading out more, which causes them to occupy a larger volume. As a result, the density of the gas decreases because the same number of gas molecules are now distributed over a larger space. Choice A is incorrect because as the gas molecules spread out, the density decreases. Choice C is incorrect because the increase in temperature leads to a decrease in density due to the increased volume occupied by the gas molecules. Choice D is incorrect because with the provided scenario of temperature increase at constant pressure, the effect on density can be determined.
2. What is the formula to calculate kinetic energy?
- A. Kinetic Energy = Mass × Velocity
- B. Kinetic Energy = Force × Distance
- C. Kinetic Energy = Power × Time
- D. Kinetic Energy = Potential Energy ÷ Time
Correct answer: A
Rationale: Kinetic energy is the energy an object possesses due to its motion. The formula to calculate kinetic energy is KE = 0.5 × mass × velocity^2, which can also be written as KE = mass × (velocity)^2. Therefore, the correct formula is Kinetic Energy = Mass × Velocity. Choice B is incorrect because it represents the work formula. Choice C is incorrect as it represents the formula for work done. Choice D is incorrect as it does not accurately represent the formula for calculating kinetic energy.
3. Which type of lens focuses parallel light rays to a single point?
- A. Concave lens
- B. Convex lens
- C. Cylindrical lens
- D. Plano lens
Correct answer: B
Rationale: A convex lens focuses parallel light rays to a single point by causing them to converge. This lens is thicker in the center than at the edges, which helps in converging the light rays. Convex lenses are commonly used for tasks like magnification and focusing due to their ability to bring distant light rays to a single focal point. Choice A, the concave lens, diverges light rays rather than converging them, making it incorrect. Choice C, the cylindrical lens, is designed to focus light along one axis rather than converging parallel light rays to a single point. Choice D, the plano lens, has no curvatures to bend or focus light rays, so it does not converge parallel light rays.
4. Which term describes the resistance of a substance to being hammered into different shapes?
- A. Viscosity
- B. Ductility
- C. Malleability
- D. Conductivity
Correct answer: C
Rationale: Malleability is the property that allows a substance to be hammered or rolled into thin sheets without breaking. It is the opposite of brittleness. Ductility refers to the ability of a material to be drawn into thin wires, not hammered into shapes. Viscosity is the measure of a fluid's resistance to flow, indicating how thick or sticky it is, not related to shaping by hammering. Conductivity refers to the ability of a material to conduct electricity or heat, not resistance to being hammered into different shapes.
5. What determines the defining characteristic of an element?
- A. Neutrons in its nucleus
- B. Electrons surrounding the nucleus
- C. Protons in its nucleus
- D. All of the above
Correct answer: C
Rationale: The defining characteristic of an element is determined by the number of protons in its nucleus, which is referred to as the atomic number. The number of protons uniquely identifies an element. The correct answer is choice C because the number of protons in the nucleus of an atom defines its elemental identity, as different elements have a unique number of protons. Neutrons and electrons do play essential roles in the atom, but they do not determine the defining characteristic of an element. Neutrons contribute to the stability of the nucleus and isotopes of an element, while electrons are involved in chemical bonding and the reactivity of an atom.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access