ATI TEAS 7
ATI TEAS Science Test
1. If every child in a certain family suffers from autism, what possible conclusion can be drawn about autism?
- A. Autism may be lethal.
- B. Autism may be genetic.
- C. Autism is related to traditional nuclear family structures.
- D. No conclusion can be drawn based on this evidence.
Correct answer: B
Rationale: The possible conclusion that can be drawn from every child in a certain family suffering from autism is that autism may be genetic. The fact that every child in the family has autism suggests a strong genetic influence on the condition within this particular family. This does not necessarily mean that autism is solely genetic in all cases, but in this specific family, the pattern of all children being affected points towards a genetic connection. Choice A is incorrect as the information provided does not suggest that autism is lethal. Choice C is incorrect as there is no evidence to support a relationship between autism and traditional nuclear family structures. Choice D is incorrect because a conclusion can be drawn from the given evidence, indicating a potential genetic link within this specific family.
2. What is a major structure of the limbic system?
- A. Brainstem
- B. Spinal cord
- C. Hypothalamus
- D. Cerebral cortex
Correct answer: C
Rationale: The correct answer is C: Hypothalamus. The hypothalamus is a significant structure of the limbic system responsible for regulating various functions such as emotions, autonomic functions, and hormone production. It plays a crucial role in maintaining homeostasis and orchestrating responses to stress and emotional stimuli. Choices A, B, and D are incorrect. The brainstem, although a vital part of the brain, is not a major structure of the limbic system. The spinal cord is not part of the limbic system; it is primarily involved in transmitting sensory and motor information between the brain and the rest of the body. The cerebral cortex is responsible for higher cognitive functions but is not a major structure within the limbic system.
3. Which of the following neurotransmitters slows down the activity of neurons to prevent overexcitation?
- A. Acetylcholine
- B. Dopamine
- C. GABA
- D. Serotonin
Correct answer: C
Rationale: The correct answer is C: GABA (gamma-aminobutyric acid). GABA is an inhibitory neurotransmitter that slows down neuronal activity, helping to prevent overexcitation in the brain. It counterbalances the effects of excitatory neurotransmitters like glutamate, playing a crucial role in maintaining the balance of neuronal activity in the brain. Acetylcholine (Choice A) is primarily an excitatory neurotransmitter involved in muscle movement and cognitive functions. Dopamine (Choice B) plays a role in reward-motivated behavior and motor control. Serotonin (Choice D) is involved in regulating mood, appetite, and sleep but is not primarily responsible for slowing down neuronal activity to prevent overexcitation.
4. What is the balanced chemical equation for the reaction between sulfuric acid (H2SO4) and potassium hydroxide (KOH)?
- A. H2SO4 + KOH → K2SO4 + H2O
- B. 2H2SO4 + 2KOH → 2K2SO4 + 2H2O
- C. H2SO4 + 2KOH → K2SO4 + 2H2O
- D. H2SO4 + 2KOH → K2SO4 + H2O
Correct answer: C
Rationale: When sulfuric acid (H2SO4) reacts with potassium hydroxide (KOH), it forms potassium sulfate (K2SO4) and water (H2O). To balance the equation, 2 KOH molecules are required to react with 1 H2SO4 molecule, resulting in 1 K2SO4 molecule and 2 H2O molecules. Therefore, the balanced chemical equation is H2SO4 + 2KOH → K2SO4 + 2H2O, which corresponds to option C. Choice A is incorrect because it does not account for the correct stoichiometry between the reactants and products. Choice B incorrectly doubles all the molecules in the reaction, leading to an unbalanced equation. Choice D incorrectly balances the equation with 1 KOH molecule instead of the required 2 KOH molecules, making it unbalanced. Thus, option C is the correct balanced chemical equation for the reaction between sulfuric acid and potassium hydroxide.
5. How many daughter cells are formed from one parent cell during meiosis?
- A. One
- B. Two
- C. Three
- D. Four
Correct answer: D
Rationale: During meiosis, one parent cell produces four genetically distinct daughter cells. This occurs through two rounds of cell division, resulting in four haploid cells with half the number of chromosomes as the parent cell. Each daughter cell is genetically unique due to processes like crossing over and independent assortment during meiosis. Choice A is incorrect because meiosis results in multiple daughter cells. Choice B is incorrect because meiosis yields more daughter cells. Choice C is incorrect because meiosis produces four, not three, daughter cells.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access