ATI TEAS 7
ATI TEAS 7 science review
1. What enzyme plays a key role in breaking down carbohydrates in the small intestine?
- A. Pepsin
- B. Lipase
- C. Amylase
- D. Trypsin
Correct answer: C
Rationale: Amylase is the enzyme responsible for breaking down carbohydrates in the small intestine. It specifically targets starches and sugars, breaking them down into smaller molecules like maltose and glucose that can be absorbed by the body. Pepsin is an enzyme that breaks down proteins in the stomach, not the small intestine. Lipase is responsible for breaking down fats, not carbohydrates. Trypsin is an enzyme that breaks down proteins in the small intestine, not carbohydrates.
2. Dysentery is an infectious disease caused by which type of microbe?
- A. Helminth
- B. Bacteria
- C. Protozoan
- D. Fungus
Correct answer: B
Rationale: The correct answer is B: Bacteria. Dysentery is typically caused by bacterial infections, such as Shigella, Campylobacter, or Escherichia coli. While parasites and protozoa can also cause similar symptoms, bacterial infections are the most common causes of dysentery. Choice A (Helminth) is incorrect as helminths are parasitic worms that typically cause different types of infections. Choice C (Protozoan) is incorrect as some protozoa like Entamoeba histolytica can cause dysentery, but bacterial infections are more common. Choice D (Fungus) is incorrect as fungal infections do not typically cause dysentery.
3. Scientists compare the DNA of different organisms to understand evolutionary relationships. What is this type of evidence called?
- A. Morphological evidence (comparing body structures)
- B. Biochemical evidence (comparing molecules like proteins)
- C. Geographic distribution evidence (where organisms live)
- D. Genetic evidence (comparing DNA sequences)
Correct answer: D
Rationale: A) Morphological evidence involves comparing body structures of organisms, which can provide information about evolutionary relationships based on physical similarities and differences. However, DNA comparison is a more direct and accurate method for understanding evolutionary relationships. B) Biochemical evidence involves comparing molecules like proteins, which can also provide insights into evolutionary relationships. However, DNA comparison is considered more reliable due to the direct relationship between DNA sequences and genetic information. C) Geographic distribution evidence refers to where organisms live and how their distribution may provide clues about evolutionary history. While this can be informative, it is not as direct or specific as comparing DNA sequences. D) Genetic evidence involves comparing DNA sequences of different organisms to understand their evolutionary relationships. DNA comparison is a powerful tool in evolutionary biology because it provides direct information about genetic similarities and differences, offering precise insights into evolutionary relationships.
4. Which molecule is responsible for storing and providing a quick source of energy during short bursts of intense physical activity, such as weightlifting or sprinting?
- A. ATP (Adenosine Triphosphate)
- B. Glucose
- C. Myoglobin
- D. Lactic Acid
Correct answer: A
Rationale: ATP (Adenosine Triphosphate) is the molecule responsible for storing and providing a quick source of energy during short bursts of intense physical activity like weightlifting or sprinting. ATP is broken down to release energy rapidly when muscles need quick, intense efforts. Glucose is a source of energy but must be converted into ATP before it can be used by muscles. Myoglobin is a protein that stores oxygen in muscle cells and does not directly provide energy. Lactic acid is produced during intense exercise but is not the primary molecule responsible for providing quick energy during short bursts of intense physical activities.
5. What is the building block of RNA?
- A. Amino acid
- B. Nucleotide
- C. Protein
- D. Fatty acid
Correct answer: B
Rationale: Nucleotide: Nucleotides are the building blocks of RNA. A nucleotide consists of a nitrogenous base (adenine, guanine, cytosine, or uracil in RNA), a sugar (ribose in RNA), and a phosphate group. A) Amino acid: Amino acids are the building blocks of proteins, not RNA. C) Protein: Proteins are made up of amino acids, not nucleotides. D) Fatty acid: Fatty acids are components of lipids, not RNA.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access