ATI TEAS 7
ATI TEAS 7 Science Practice Test
1. Which organelle provides energy for cellular functions?
- A. Nucleus
- B. Cell membrane
- C. Mitochondria
- D. Cytoplasm
Correct answer: C
Rationale: The correct answer is C, Mitochondria. Mitochondria are often referred to as the powerhouse of the cell as they produce energy in the form of ATP through cellular respiration. This process is essential for various cellular functions, making mitochondria crucial for energy production within the cell. Choice A, Nucleus, is incorrect as the nucleus is responsible for housing the cell's genetic material and controlling cellular activities but not for energy production. Choice B, Cell membrane, is incorrect as it is primarily involved in maintaining cell integrity and regulating the passage of substances in and out of the cell, not in energy production. Choice D, Cytoplasm, is incorrect as it is the jelly-like substance that fills the cell and is the site of many metabolic pathways, but it is not the specific organelle responsible for energy production.
2. Passive transport does not require energy input from the cell. Which of the following is an example of passive transport?
- A. Active transport of ions across a membrane
- B. Diffusion of small molecules across a concentration gradient
- C. Movement of large molecules using vesicles
- D. Endocytosis of particles into the cell
Correct answer: B
Rationale: Passive transport refers to the movement of molecules across a cell membrane without the input of energy. Diffusion of small molecules across a concentration gradient is a classic example of passive transport, as it occurs spontaneously from an area of high concentration to an area of low concentration. Active transport (option A) requires energy input in the form of ATP to move substances against their concentration gradient. Movement of large molecules using vesicles (option C) involves processes like endocytosis and exocytosis that require energy in the form of ATP. Endocytosis of particles into the cell (option D) is an active process that requires energy expenditure by the cell to engulf and internalize extracellular substances.
3. The acceleration of a falling object due to gravity has been proven to be 9.8 m/s². A scientist drops a cactus four times and measures the acceleration with an accelerometer and gets the following results: 9.79 m/s², 9.81 m/s², 9.80 m/s², and 9.78 m/s². Which of the following accurately describes the measurements?
- A. They're both accurate and precise.
- B. They're accurate but not precise.
- C. They're precise but not accurate.
- D. They're neither accurate nor precise.
Correct answer: A
Rationale: The measurements are both close to the actual value (accurate) and consistent with each other (precise). Accuracy refers to how close a measurement is to the true value, and precision refers to the reproducibility or consistency of the measurements. In this case, the measured values are all very close to the actual value of 9.8 m/s², indicating accuracy. Additionally, the measurements are clustered closely together, demonstrating precision. Therefore, the measurements are both accurate and precise, making choice A the correct answer. Choices B, C, and D are incorrect because the measurements exhibit both accuracy and precision, as they are close to the true value and also consistent with each other.
4. What is the term for a substance that can act as both a proton donor and a proton acceptor?
- A. Acid
- B. Base
- C. Amphiprotic
- D. Neutral
Correct answer: C
Rationale: Amphiprotic substances are those that can both donate and accept protons. They possess characteristics of both acids and bases, making them capable of acting as proton donors and proton acceptors. Choices A and B represent substances that are specific to either donating or accepting protons. Choice D does not describe a substance's ability to donate or accept protons since neutrality does not inherently involve proton donation or acceptance.
5. Which of the following enzymes unwinds the double-stranded DNA during replication?
- A. Helicase
- B. Ligase
- C. Nuclease
- D. Polymerase
Correct answer: A
Rationale: Helicase is the enzyme responsible for unwinding the double-stranded DNA during replication by breaking the hydrogen bonds between the base pairs. This process creates the replication fork where DNA polymerase can then synthesize new DNA strands. Ligase functions to join Okazaki fragments on the lagging strand, not unwind DNA. Nuclease is involved in DNA repair by removing damaged DNA segments. Polymerase is responsible for synthesizing new DNA strands based on the existing template strands, not for unwinding the DNA.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access