ATI TEAS 7
TEAS 7 science practice
1. What is the primary function of the cell membrane?
- A. To provide structural support for the cell
- B. To transport substances in and out of the cell
- C. To synthesize proteins and lipids
- D. To store genetic material
Correct answer: B
Rationale: The primary function of the cell membrane, also known as the plasma membrane, is to regulate the movement of substances in and out of the cell. It acts as a selectively permeable barrier, allowing specific molecules to pass through while blocking others. This role is crucial for maintaining the internal environment of the cell by enabling essential nutrients to enter and waste products to exit. While the cell membrane provides some structural support for the cell, its main function is substance transport. Protein and lipid synthesis predominantly occur in organelles like the endoplasmic reticulum and Golgi apparatus, and storing genetic material is the nucleus's responsibility. Therefore, choices C (To synthesize proteins and lipids) and D (To store genetic material) are incorrect as these functions are carried out by other cell organelles, not the cell membrane.
2. What is the process of removing waste products from the cell called?
- A. Exocytosis
- B. Endocytosis
- C. Phagocytosis
- D. Pinocytosis
Correct answer: A
Rationale: A) Exocytosis is the process by which cells expel waste products or other substances by fusing a vesicle containing the waste with the cell membrane, releasing its contents outside the cell. This process is essential for maintaining cellular homeostasis by removing waste products from the cell. B) Endocytosis is the process by which cells take in substances by engulfing them in a vesicle formed from the cell membrane. This process is the opposite of exocytosis and is used to bring substances into the cell. C) Phagocytosis is a type of endocytosis where cells engulf solid particles or other cells to form a vesicle called a phagosome. This process is used by immune cells to engulf and destroy pathogens. D) Pinocytosis is a type of endocytosis where cells engulf fluids and dissolved solutes. This process allows cells to take in nutrients.
3. Deuterium, a stable isotope of hydrogen, has a nucleus containing:
- A. A single proton
- B. A proton and a neutron
- C. Two protons and an electron
- D. Two neutrons
Correct answer: B
Rationale: Deuterium, as an isotope of hydrogen, has an atomic number of 1 and a mass number of 2. The nucleus of deuterium contains one proton (as in all hydrogen atoms) and one neutron, totaling 2 nucleons in the nucleus. Therefore, the correct answer is that deuterium's nucleus contains a proton and a neutron. Choices A, C, and D are incorrect. Deuterium is not just a single proton (A), doesn't have two protons and an electron (C), and doesn't contain two neutrons (D). The correct composition of deuterium's nucleus is one proton and one neutron.
4. What is the scientific term for the involuntary rhythmic contraction and relaxation of the heart muscle?
- A. Peristalsis
- B. Myogenesis
- C. Myocardial contractility
- D. Systole and diastole
Correct answer: D
Rationale: The correct answer is D: Systole and diastole. Systole and diastole are the two phases of the cardiac cycle where the heart muscle contracts (systole) and relaxes (diastole) rhythmically to pump blood throughout the body. This rhythmic process ensures proper blood circulation by pumping blood to the lungs and the rest of the body. Peristalsis, on the other hand, refers to the involuntary constriction and relaxation of the muscles in the gastrointestinal tract, aiding in the movement of food and waste. Myogenesis is the process of muscle tissue formation, and myocardial contractility pertains to the heart muscle's ability to contract efficiently.
5. What does the term 'electron configuration' refer to in relation to an atom?
- A. The arrangement of electrons in an atom's orbitals.
- B. The number of protons in an atom's nucleus.
- C. The number of neutrons in an atom's nucleus.
- D. The number of electrons in an atom's valence shell.
Correct answer: A
Rationale: The electron configuration of an atom refers to the arrangement of electrons in the atom's orbitals. This arrangement determines the atom's chemical properties and behavior. The number of protons in an atom's nucleus (option B) is known as the atomic number, which defines the element. The number of neutrons in an atom's nucleus (option C) contributes to the atom's mass number. The number of electrons in an atom's valence shell (option D) is important for understanding the atom's reactivity and bonding behavior, but the electron configuration specifically refers to how electrons are distributed among the different orbitals in an atom.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access