ATI TEAS 7
ATI TEAS 7 Science
1. Which of the following is responsible for regulating body temperature?
- A. Hypothalamus
- B. Cerebellum
- C. Pituitary gland
- D. Thyroid gland
Correct answer: A
Rationale: The correct answer is the Hypothalamus. The hypothalamus plays a crucial role in regulating body temperature, hunger, thirst, and maintaining overall homeostasis in the body. It receives input from temperature receptors in the skin and internal organs and helps initiate responses to maintain a stable internal body temperature. Acting as the body's thermostat, the hypothalamus adjusts responses to ensure the body's temperature remains within a narrow range, despite external conditions. The Cerebellum (Choice B) is primarily involved in coordinating movement and balance, not regulating body temperature. The Pituitary gland (Choice C) is responsible for producing and secreting hormones that regulate various bodily functions but not directly involved in body temperature regulation. The Thyroid gland (Choice D) plays a role in metabolism and hormone regulation but is not the primary regulator of body temperature.
2. How does electron configuration relate to the periodic table?
- A. Elements within the same period have identical electron configurations.
- B. Elements within the same group share similar electron configurations in their outermost shell.
- C. Electron configuration determines an element's position on the periodic table.
- D. An element's group on the periodic table is determined by the number of electron shells it possesses.
Correct answer: B
Rationale: Elements within the same group share similar electron configurations in their outermost shell. The periodic table is organized based on the number of electrons in the outermost energy level, known as valence electrons, which significantly influence an element's chemical properties. Elements within the same group have the same number of valence electrons, leading to comparable chemical behaviors. Choices A and D are incorrect because elements within the same period, not group, have identical electron configurations, and an element's group is primarily determined by the number of valence electrons and not the number of electron shells. Choice C is incorrect because while electron configuration is crucial for understanding an element's properties, it is not the sole factor determining its position on the periodic table.
3. What impact would the removal of a keystone species have in an ecosystem?
- A. Lead to a decrease in competition among other species
- B. Cause a slight increase in primary productivity
- C. Have a minimal impact on the overall ecosystem structure
- D. Disrupt the food web and cause cascading effects on other populations
Correct answer: D
Rationale: Keystone species play a crucial role in maintaining the balance and structure of an ecosystem due to their significant influence. If a keystone species is removed, it disrupts the delicate food web dynamics and can trigger cascading effects throughout the ecosystem. The disruption in predator-prey relationships can lead to population declines and even extinctions of other species. Options A, B, and C are incorrect because the removal of a keystone species would not decrease competition among other species, cause a slight increase in primary productivity, or have a minimal impact on the overall ecosystem structure. Instead, it would have a profound impact, disrupting the food web and causing cascading effects on other populations.
4. Describe the mechanism by which genes are transmitted from parents to offspring.
- A. Blending of parental genes, resulting in an average of their traits.
- B. Random assortment of alleles during meiosis, leading to unique combinations in each offspring.
- C. Inheritance of solely dominant alleles, masking the influence of recessive ones.
- D. Direct transfer of both parental genomes, creating identical copies of the parents.
Correct answer: B
Rationale: A) Blending of parental genes, resulting in an average of their traits, is not an accurate description of how genes are transmitted. In reality, genes are not blended but rather passed down in discrete units. B) Random assortment of alleles during meiosis is the correct mechanism by which genes are transmitted from parents to offspring. During meiosis, homologous chromosomes separate, and alleles are randomly distributed to the gametes, leading to unique combinations of genes in each offspring. C) Inheritance of solely dominant alleles, masking the influence of recessive ones, is not an accurate representation of gene transmission. Offspring inherit alleles from both parents, and the expression of dominant or recessive traits depends on the specific combination of alleles. D) Direct transfer of both parental genomes, creating identical copies of the parents, is not how genes are transmitted. Offspring inherit a unique combination
5. What are the fundamental units of structure and function in all living organisms, including humans, termed?
- A. Muscles
- B. Organs
- C. Tissues
- D. Cells
Correct answer: D
Rationale: Cells are the fundamental units of structure and function in all living organisms. They are the basic building blocks of life and carry out essential functions necessary for an organism to survive and function properly. Muscles, organs, and tissues are composed of cells, but cells are the smallest unit that can carry out all the functions of life. Muscles are made up of muscle tissue, which in turn is composed of muscle cells. Organs are structures made up of different types of tissues working together, and tissues are groups of cells with a similar structure and function. Therefore, while muscles, organs, and tissues are important components of living organisms, cells are the fundamental units that perform all the vital functions of life.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access