ATI TEAS 7
TEAS 7 Science Practice Test
1. Which of the following describes how atomic radius varies across the periodic table?
- A. Atomic radius increases from top to bottom and left to right on the periodic table.
- B. Atomic radius increases from top to bottom and right to left on the periodic table.
- C. Atomic radius increases from top to bottom and toward the halogens on the periodic table.
- D. Atomic radius increases from top to bottom and toward the noble gases on the periodic table.
Correct answer: A
Rationale: Atomic radius tends to increase from top to bottom and left to right on the periodic table. This is because as you move down a group (top to bottom), new energy levels are added, increasing the distance of the outer electrons from the nucleus and thus increasing the size of the atom. On the other hand, as you move from left to right across a period, the number of protons and electrons increases, leading to a stronger nuclear charge that attracts the electrons closer to the nucleus, resulting in smaller atomic radii. Choice B is incorrect as atomic radius does not increase from right to left. Choices C and D are incorrect as they incorrectly associate the trend with specific groups of elements (halogens and noble gases) rather than the general trend observed on the periodic table.
2. Isotopes are variants of a single element that differ in:
- A. Having the same number of protons but varying numbers of neutrons
- B. Having the same number of neutrons but varying numbers of protons
- C. Having the same mass but different atomic numbers
- D. None of the above
Correct answer: A
Rationale: Isotopes are variants of a single element that have the same number of protons, the defining characteristic of an element. They differ in the number of neutrons they possess, leading to isotopes having different atomic masses while retaining the same chemical properties. Choice B is incorrect because isotopes have the same number of neutrons and differ in the number of protons. Choice C is incorrect because isotopes have different masses due to varying numbers of neutrons, not different atomic numbers. Choice D is incorrect as isotopes do differ in the number of neutrons they possess.
3. What is the small repeating unit in the contractile apparatus of skeletal muscle?
- A. Myofibril
- B. Actin
- C. Sarcomere
- D. Myosin
Correct answer: C
Rationale: The correct answer is 'Sarcomere.' The sarcomere is the smallest repeating unit within myofibrils and is responsible for muscle contraction in skeletal muscle. It consists of overlapping actin and myosin filaments arranged in a highly organized structure that allows for the sliding of filaments during muscle contraction. 'Myofibril' (choice A) is incorrect because it is a larger structure composed of sarcomeres. 'Actin' (choice B) and 'Myosin' (choice D) are incorrect as they are individual proteins that are components of the sarcomere, not the smallest repeating unit itself.
4. How do isotopes affect the atomic mass of an element?
- A. Isotopes have no effect on the atomic mass of an element.
- B. Isotopes cause the atomic mass of an element to vary slightly.
- C. Isotopes cause the atomic mass of an element to be exactly the same for all isotopes of that element.
- D. Isotopes cause the atomic mass of an element to vary greatly.
Correct answer: B
Rationale: Isotopes are atoms of the same element that have the same number of protons but different numbers of neutrons. Since the atomic mass of an element is the weighted average of the masses of its isotopes, the presence of isotopes causes the atomic mass of an element to vary slightly. This variation occurs because different isotopes have different masses due to their varying numbers of neutrons. The atomic mass is affected by the abundance of each isotope, leading to a slight fluctuation in the overall atomic mass of the element. Choice A is incorrect because isotopes do influence the atomic mass. Choice C is incorrect because isotopes have different masses, affecting the overall atomic mass. Choice D is incorrect as isotopes typically do not cause a significant variation in atomic mass, but rather a slight fluctuation.
5. In order to be included in the formation of a scientific conclusion, evidence must be:
- A. Quantitative
- B. Reproducible
- C. Obvious
- D. All of the above
Correct answer: B
Rationale: For scientific evidence to be included in the formation of a scientific conclusion, it must be reproducible. Reproducibility is a fundamental aspect of the scientific method, ensuring that the same experiment will yield the same results if repeated. This allows other researchers to verify the findings and conclusions drawn from the evidence, enhancing the reliability and validity of the scientific process. While quantitative data can be important in supporting evidence, it is not a strict requirement for evidence to be included in scientific conclusions. The term 'obvious' is subjective and does not necessarily guarantee the reliability or reproducibility of the evidence, making it an unreliable criterion for scientific conclusions. Therefore, choice B, reproducible, is the correct answer as it aligns with the fundamental principles of the scientific method, emphasizing the importance of replicating results for establishing reliable conclusions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access