ATI TEAS 7
ATI TEAS Science
1. Which of the following best defines the term amphoteric?
- A. A substance that conducts electricity due to ionization when dissolved in a solvent
- B. A substance that can act as an acid or a base depending on the properties of the solute
- C. A substance that, according to the Brønsted-Lowry Acid-Base Theory, is a proton-donor
- D. A substance that donates its proton and forms its conjugate base in a neutralization reaction
Correct answer: B
Rationale: An amphoteric substance can act as both an acid or a base depending on the environment. It can donate a proton (act as an acid) or accept a proton (act as a base), showing versatility in its behavior. Choice A is incorrect as it describes an electrolyte rather than an amphoteric substance. Choice C is incorrect as it defines an acid based on the Brønsted-Lowry Acid-Base Theory. Choice D is incorrect as it specifically refers to a substance donating a proton in a neutralization reaction, not capturing the dual behavior of an amphoteric substance.
2. What information can be obtained directly from the element's atomic number?
- A. Its atomic mass
- B. Its position on the periodic table
- C. Its number of neutrons
- D. Its chemical properties
Correct answer: B
Rationale: The atomic number of an element represents the number of protons in the nucleus of an atom. This number determines the element's unique identity and its position on the periodic table. The atomic mass (option A) is not directly determined by the atomic number but is a weighted average of the isotopes of an element. The number of neutrons (option C) is not directly provided by the atomic number but can be calculated by subtracting the atomic number from the atomic mass. The position on the periodic table (option B) is directly related to the atomic number, as elements are arranged in order of increasing atomic number. The chemical properties of an element (option D) are influenced by the number of protons in the nucleus, which is determined by the atomic number.
3. What is the primary function of coronary arteries?
- A. Delivering oxygenated blood throughout the body.
- B. Supplying oxygenated blood to the heart muscle itself.
- C. Carrying deoxygenated blood back to the heart.
- D. Regulating blood pressure through vasoconstriction and vasodilation.
Correct answer: B
Rationale: The primary function of coronary arteries is to supply oxygenated blood to the heart muscle itself. The heart is a muscle that needs a constant supply of oxygen and nutrients to function properly. Coronary arteries branch off the aorta and specifically deliver oxygenated blood to the heart muscle, ensuring its proper function. Choice A is incorrect because coronary arteries do not deliver blood throughout the entire body but specifically to the heart. Choice C is incorrect as coronary arteries carry oxygenated blood away from the heart. Choice D is incorrect as the primary function of the coronary arteries is not to regulate blood pressure but rather to provide oxygenated blood to the heart muscle.
4. Which of the following is a component of the immune system?
- A. Red blood cells
- B. White blood cells
- C. Platelets
- D. Plasma
Correct answer: B
Rationale: White blood cells are a crucial component of the immune system as they play a key role in fighting infections and foreign invaders. Red blood cells are primarily involved in oxygen transport, platelets are important for blood clotting, and plasma is the liquid component of blood that carries various substances but is not directly involved in the immune response.
5. What is the process of breaking down fatty acids into acetyl-CoA, a key molecule in cellular respiration, called?
- A. Beta-oxidation
- B. Lipolysis
- C. Carbohydrate catabolism
- D. Nucleic acid catabolism
Correct answer: A
Rationale: Beta-oxidation is the correct term for the process of breaking down fatty acids into acetyl-CoA molecules. This essential process takes place in the mitochondria and is a pivotal step in fatty acid metabolism for energy production. Lipolysis, however, refers to the breakdown of fats into fatty acids and glycerol but does not specifically involve the conversion of fatty acids into acetyl-CoA. Carbohydrate catabolism focuses on breaking down carbohydrates into glucose for energy production and is not directly linked to the conversion of fatty acids into acetyl-CoA. Nucleic acid catabolism involves the breakdown of nucleic acids into nucleotides and is not associated with the conversion of fatty acids into acetyl-CoA.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access