ATI TEAS 7
ATI TEAS Science Questions
1. Which cellular organelle is used for digestion to recycle materials?
- A. The Golgi apparatus
- B. The lysosome
- C. The centrioles
- D. The mitochondria
Correct answer: B
Rationale: The lysosome is the correct cellular organelle used for digestion to recycle materials. Lysosomes contain enzymes that break down waste materials, cellular debris, and ingested substances. This process helps in recycling nutrients and maintaining cellular homeostasis. The Golgi apparatus is involved in processing and packaging proteins, the centrioles play a role in cell division, and the mitochondria are responsible for energy production. However, none of these organelles are primarily used for digestion and recycling of materials within the cell.
2. What is the balanced chemical equation for the reaction between sulfuric acid (H2SO4) and potassium hydroxide (KOH)?
- A. H2SO4 + KOH → K2SO4 + H2O
- B. 2H2SO4 + 2KOH → 2K2SO4 + 2H2O
- C. H2SO4 + 2KOH → K2SO4 + 2H2O
- D. H2SO4 + 2KOH → K2SO4 + H2O
Correct answer: C
Rationale: When sulfuric acid (H2SO4) reacts with potassium hydroxide (KOH), it forms potassium sulfate (K2SO4) and water (H2O). To balance the equation, 2 KOH molecules are required to react with 1 H2SO4 molecule, resulting in 1 K2SO4 molecule and 2 H2O molecules. Therefore, the balanced chemical equation is H2SO4 + 2KOH → K2SO4 + 2H2O, which corresponds to option C. Choice A is incorrect because it does not account for the correct stoichiometry between the reactants and products. Choice B incorrectly doubles all the molecules in the reaction, leading to an unbalanced equation. Choice D incorrectly balances the equation with 1 KOH molecule instead of the required 2 KOH molecules, making it unbalanced. Thus, option C is the correct balanced chemical equation for the reaction between sulfuric acid and potassium hydroxide.
3. What is the process of cells becoming specialized to perform specific functions called?
- A. Cell division
- B. Cell differentiation
- C. Cell growth
- D. Cell regeneration
Correct answer: B
Rationale: Cell differentiation is the process by which cells become specialized to perform specific functions. During differentiation, cells acquire specific structures and functions that allow them to carry out particular roles in the body. Cell division refers to the process by which a parent cell divides into two or more daughter cells. Cell growth is the process by which cells increase in size and number. Cell regeneration is the process by which new cells are produced to replace damaged or lost cells in an organism. Therefore, in this context, the process of cells becoming specialized to perform specific functions is best described as cell differentiation.
4. The Hardy-Weinberg equilibrium describes a population that is:
- A. Undergoing rapid evolution due to strong directional selection.
- B. Not evolving and at genetic equilibrium with stable allele frequencies.
- C. Experiencing a founder effect leading to a reduction in genetic diversity.
- D. Dominated by a single homozygous genotype that eliminates all variation.
Correct answer: B
Rationale: The Hardy-Weinberg equilibrium describes a theoretical population in which allele frequencies remain constant from generation to generation, indicating that the population is not evolving. This equilibrium occurs under specific conditions: no mutation, no gene flow, random mating, a large population size, and no natural selection. In this scenario, all genotypes are in proportion to the allele frequencies, and genetic diversity is maintained. Options A, C, and D do not accurately describe a population in Hardy-Weinberg equilibrium. Option A suggests rapid evolution due to strong directional selection, which would disrupt the equilibrium. Option C mentions a founder effect, which can reduce genetic diversity but is not a characteristic of a population in Hardy-Weinberg equilibrium. Option D describes a population dominated by a single homozygous genotype, which also does not align with the genetic diversity seen in a population at Hardy-Weinberg equilibrium.
5. Which white blood cell type is responsible for the initial attack on pathogens?
- A. Red blood cells
- B. Platelets
- C. Phagocytes
- D. Lymphocytes
Correct answer: C
Rationale: Phagocytes are a type of white blood cell that is crucial in the initial attack on pathogens. These cells have the ability to engulf and digest foreign particles such as bacteria and viruses, thereby preventing infections. Red blood cells primarily function in oxygen transport, platelets are vital for blood clotting, and lymphocytes are involved in the immune response. However, phagocytes are specifically designed to provide the initial defense against pathogens by directly attacking and eliminating them.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access