ATI TEAS 7
TEAS 7 science study guide free
1. Which functional group is commonly found in ketones?
- A. Hydroxyl
- B. Carbonyl
- C. Ester
- D. Amine
Correct answer: B
Rationale: Ketones contain a carbonyl functional group, which consists of a carbon atom double-bonded to an oxygen atom. This distinguishes ketones from other functional groups such as hydroxyl, ester, and amine. The presence of the carbonyl group, not hydroxyl (choice A), ester (choice C), or amine (choice D), is characteristic of ketones, making choice B, 'Carbonyl', the correct answer.
2. Where is the major site for nutrient absorption in the digestive system?
- A. Mouth
- B. Stomach
- C. Small intestine
- D. Large intestine
Correct answer: C
Rationale: The small intestine is recognized as the major site for nutrient absorption in the digestive system. It plays a crucial role in the digestion and absorption of nutrients from food. The small intestine's villi and microvilli provide a large surface area specialized for absorbing nutrients like carbohydrates, proteins, fats, vitamins, and minerals. This efficient absorption process is essential for supplying the body with the necessary nutrients for energy production, growth, and overall functioning. The mouth is primarily involved in the initial stages of digestion through mechanical and chemical breakdown of food. The stomach aids in further mechanical and chemical digestion but is not the primary site for nutrient absorption. The large intestine's main function is to absorb water and electrolytes, not nutrients.
3. How can bacteria acquire new genetic material from their environment?
- A. Transformation
- B. Transduction
- C. Conjugation
- D. All of the above
Correct answer: D
Rationale: A) Transformation: Transformation is the process by which bacteria can take up free DNA from their environment and incorporate it into their own genome, leading to the acquisition of new genetic material and traits. B) Transduction: Transduction involves the transfer of genetic material from one bacterium to another by a bacteriophage, a virus that infects bacteria. The bacteriophage carries bacterial DNA from one host cell to another, facilitating the transfer of genetic material. C) Conjugation: Conjugation is a mechanism of horizontal gene transfer in bacteria where genetic material is transferred between two bacterial cells in direct contact. This transfer is facilitated by a conjugative plasmid carrying the genetic information. Therefore, all the processes mentioned (transformation, transduction, and conjugation) are ways in which bacteria can acquire new genetic material from their environment.
4. What is the process of converting glucose into ATP, the cell's primary energy currency, called?
- A. Cellular respiration
- B. Fermentation
- C. Photosynthesis
- D. Hydrolysis
Correct answer: A
Rationale: A) Cellular respiration is the correct answer. It is the process by which cells convert glucose into ATP, the primary energy currency of the cell. This process involves a series of biochemical reactions that occur in the mitochondria of eukaryotic cells or the cytoplasm of prokaryotic cells. Through cellular respiration, the energy stored in glucose molecules is gradually released and captured in the form of ATP. B) Fermentation is an anaerobic process that occurs in the absence of oxygen. It involves the partial breakdown of glucose to produce ATP and end products such as lactic acid or ethanol. While fermentation can generate ATP, it is less efficient than cellular respiration in terms of energy production. C) Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy in the form of glucose. This process occurs in chloroplasts and is the opposite of cellular respiration. While photosynthesis produces glucose, it is not the process of converting glucose into ATP. D) Hydrolysis is a chemical process that uses water to break down molecules into smaller components. It is not specifically related to converting glucose into ATP.
5. What ethical considerations are associated with the potential use of CRISPR-Cas9 technology in humans?
- A. Concerns about unintended consequences on the genome and potential off-target effects.
- B. Debates on modifying the human germline and potential eugenic implications.
- C. Accessibility and affordability of the technology, ensuring equitable access to benefits.
- D. Risks associated with CRISPR-Cas9 editing germline cells and potential long-term impacts.
Correct answer: B
Rationale: The correct answer is B. CRISPR-Cas9 technology allows precise editing of germline cells, raising ethical concerns about modifying the human gene pool. This includes potential eugenic implications, debates on altering future generations, and the moral implications of such genetic modifications. Choice A discusses unintended consequences and off-target effects, but the primary ethical consideration with CRISPR-Cas9 technology relates to altering the human germline. Choices C and D, while important factors, are not the central ethical dilemmas associated with using CRISPR-Cas9 technology in humans.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access