ATI TEAS 7
ATI TEAS Science Practice Test
1. What occurs in each of the three phases of the uterine cycle?
- A. Proliferative: uterine lining thickens
- B. Secretory: ovulation occurs
- C. Menstrual: uterine lining sheds
- D. Proliferative: uterine lining thickens
Correct answer: D
Rationale: The correct answer is D. In the proliferative phase of the uterine cycle, the uterine lining thickens in preparation for a possible pregnancy. Ovulation occurs around day 14 of the cycle. The menstrual phase is when the uterine lining sheds if pregnancy has not occurred. Choice A is a duplicate of the correct answer. Choice B is incorrect as ovulation occurs during the mid-cycle, which is the ovulatory phase, not the secretory phase. Choice C is incorrect because the uterine lining sheds during the menstrual phase, not the secretory phase.
2. Adaptive radiation refers to the evolutionary process where:
- A. A single ancestral species diversifies into multiple descendant species due to ecological pressures in a heterogeneous environment.
- B. Two unrelated species evolve similar adaptations in response to similar environments, leading to convergent evolution.
- C. A population becomes increasingly well-adapted to its current environment through continued natural selection.
- D. The fossil record exhibits gaps or missing links in the evolutionary history of a lineage.
Correct answer: A
Rationale: - Adaptive radiation is a process where a single ancestral species diversifies into multiple descendant species to exploit different ecological niches within a heterogeneous environment. - This diversification occurs due to the different selective pressures present in various habitats, leading to the evolution of distinct traits and adaptations in different descendant species. - Option A accurately describes the process of adaptive radiation, where the initial species undergoes rapid speciation to occupy different ecological roles and adapt to diverse environmental conditions. - Options B, C, and D do not accurately describe adaptive radiation but refer to other evolutionary processes such as convergent evolution, natural selection, and gaps in the fossil record, respectively.
3. Which of the following is NOT a type of asexual reproduction in bacteria?
- A. Binary fission
- B. Conjugation
- C. Budding
- D. Transduction
Correct answer: D
Rationale: A) Binary fission: This is a common method of asexual reproduction in bacteria where a single cell divides into two identical daughter cells. B) Conjugation: This is a process in which genetic material is transferred between bacterial cells through direct cell-to-cell contact, leading to genetic recombination. C) Budding: Budding is a form of asexual reproduction where a new organism develops from an outgrowth or bud on the parent organism. D) Transduction: Transduction is a method of horizontal gene transfer in bacteria where genetic material is transferred from one bacterium to another by a bacteriophage (a virus that infects bacteria). It is not a form of asexual reproduction in bacteria. Therefore, the correct answer is D) Transduction, as it is not a type of asexual reproduction in bacteria but a mechanism of genetic exchange.
4. Which hormone, produced by the pancreas, regulates blood sugar levels by promoting the uptake of glucose into cells?
- A. Insulin
- B. Glucagon
- C. Cortisol
- D. Thyroxine
Correct answer: A
Rationale: Insulin is the correct answer. It is produced by the pancreas and plays a crucial role in regulating blood sugar levels by facilitating the absorption of glucose into cells. When blood sugar levels are elevated, insulin is released to help cells utilize glucose for energy or store it for future use. Glucagon, choice B, is produced by the pancreas as well but has the opposite effect of raising blood sugar levels by releasing stored glucose into the bloodstream. Cortisol, choice C, is a hormone produced by the adrenal glands that is involved in the stress response and metabolism, not specifically in regulating blood sugar levels. Thyroxine, choice D, is a hormone produced by the thyroid gland that regulates metabolism but is not directly involved in the uptake of glucose into cells.
5. Why do emerging infectious diseases (EIDs) pose a significant public health threat?
- A. Because they are well-understood by medical professionals
- B. Because they are easily treatable with existing antibiotics
- C. Because they are new, rapidly evolving, and can spread quickly
- D. Because they primarily affect animals and not humans
Correct answer: C
Rationale: Emerging infectious diseases (EIDs) are a significant public health threat because they are characterized by being new or newly identified diseases that are rapidly evolving. These diseases can spread quickly within populations due to factors such as globalization, travel, urbanization, and changes in climate. EIDs often present challenges to medical professionals as they may not be well-understood initially, making it difficult to develop effective treatments or preventive measures. While some EIDs can be treatable with existing antibiotics, the rapid evolution of these diseases can lead to the development of drug resistance, further complicating treatment efforts. Additionally, EIDs are not limited to affecting animals; they can also have serious implications for human health and well-being. Therefore, the correct answer is that EIDs pose a threat because they are new, rapidly evolving, and can spread quickly. Choices A, B, and D are incorrect because EIDs are not well-understood initially, may develop drug resistance, and can affect humans significantly, not just animals.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access