ATI TEAS 7
TEAS version 7 quizlet science
1. What is the term for the small air sacs in the lungs where gas exchange (oxygen and carbon dioxide) takes place?
- A. Bronchi
- B. Alveoli
- C. Trachea
- D. Bronchioles
Correct answer: B
Rationale: The correct answer is B: Alveoli. The alveoli are the small air sacs in the lungs where gas exchange occurs. Oxygen from the air we breathe passes into the bloodstream through the alveoli, while carbon dioxide from the bloodstream passes out of the body through the alveoli. Choice A, Bronchi, are the main airways in the lungs and not the site of gas exchange. Choice C, Trachea, refers to the windpipe, which is a different structure than the alveoli. Choice D, Bronchioles, are smaller airways branching off from the bronchi and are not where gas exchange primarily occurs.
2. Which of the following cations is found at the center of a heme?
- A. Cr (III)
- B. Cu (II)
- C. Iron (II)
- D. Iron (III)
Correct answer: C
Rationale: The correct answer is Iron (II) (Fe2+), which is the cation found at the center of a heme group. Heme contains an iron (II) ion that is coordinated within the porphyrin ring structure. This iron ion is crucial for the function of heme in binding and transporting oxygen in hemoglobin and myoglobin. Choice A (Cr (III)) is incorrect as chromium is not typically found at the center of a heme group. Choice B (Cu (II)) is incorrect as copper is not the cation typically present in heme. Choice D (Iron (III)) is also incorrect as heme predominantly contains iron (II) at its center, not iron (III).
3. Which of the following is the main function of the skin?
- A. To protect the body from harm
- B. To regulate body temperature
- C. To produce hormones
- D. To sense touch, temperature, and pain
Correct answer: A
Rationale: Rationale: A) To protect the body from harm: The skin acts as a physical barrier that protects the body from external threats such as pathogens, UV radiation, and physical injuries. It helps prevent infections and dehydration, making it a crucial function of the skin. B) To regulate body temperature: While the skin does play a role in regulating body temperature through processes like sweating and vasodilation/vasoconstriction, its primary function is protection. C) To produce hormones: Hormone production is primarily carried out by endocrine glands such as the pituitary gland, thyroid gland, and adrenal glands, not the skin. D) To sense touch, temperature, and pain: The skin contains sensory receptors that allow us to perceive touch, temperature, and pain, but this function is secondary to its main role of protecting the body from harm.
4. How can a single gene mutation lead to multiple phenotypes depending on the organism?
- A. Pleiotropy describes the effect of one gene influencing multiple seemingly unrelated traits.
- B. Epigenetics involves environmental factors modifying gene expression without altering the DNA sequence.
- C. Genetic drift refers to random changes in allele frequencies within a population.
- D. Gene regulation controls the timing and level of gene expression within an organism.
Correct answer: A
Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.
5. How many moles of oxygen are required to completely react with 5 moles of propane (C3H8) in the combustion reaction?
- A. 5 moles
- B. 10 moles
- C. 15 moles
- D. 20 moles
Correct answer: C
Rationale: In the balanced chemical equation for the combustion of propane (C3H8): C3H8 + 5O2 → 3CO2 + 4H2O, 1 mole of propane (C3H8) reacts with 5 moles of oxygen (O2). To determine the moles of oxygen required to react with 5 moles of propane, we use the molar ratio: 5 moles propane x 5 moles oxygen / 1 mole propane = 25 moles oxygen. However, since the question specifically asks for the moles of oxygen needed to react with 5 moles of propane, the correct answer is 15 moles of oxygen. Choice A, 5 moles, is incorrect because this is the amount of propane provided, not the oxygen required. Choice B, 10 moles, is incorrect as it does not correspond to the molar ratio in the balanced equation. Choice D, 20 moles, is incorrect as it is not in line with the stoichiometry of the reaction.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access