ATI TEAS 7
TEAS 7 practice test science
1. Why are elements in Group 18 (Noble gases) generally unreactive?
- A. They have high atomic masses
- B. They lack valence electrons
- C. Their outermost electron shells are completely filled
- D. They exist as single atoms, not molecules
Correct answer: C
Rationale: Elements in Group 18 (Noble gases) are generally unreactive because their outermost electron shells are completely filled. This results in high stability and low reactivity since they have achieved a full valence shell configuration, making them less likely to gain, lose, or share electrons with other atoms. The full valence shell configuration leads to a minimal tendency for these elements to form chemical bonds, hence exhibiting low reactivity. Choices A, B, and D are incorrect because high atomic masses, lack of valence electrons, and existing as single atoms do not directly contribute to the unreactivity of noble gases. It is the full valence shell configuration that is the primary reason for their inert nature.
2. How many amino acids can make up a protein?
- A. 10-20
- B. 50-100
- C. 100-500
- D. 1000+
Correct answer: A
Rationale: Proteins are made up of long chains of amino acids, and there are 20 standard amino acids commonly found in proteins. The sequence and arrangement of these amino acids determine the structure and function of a protein. While proteins can vary in size and complexity, the number of amino acids typically ranges from around 10 to 20 in smaller proteins to hundreds or even thousands in larger proteins. Therefore, the range of 10-20 amino acids is the most accurate representation of the number of amino acids that can make up a protein. Choices B, C, and D are incorrect as they provide ranges that are beyond the typical number of amino acids found in proteins and may lead to confusion. The correct answer is A (10-20).
3. What property of a substance remains constant regardless of changes in gravity?
- A. Mass
- B. Weight
- C. Volume
- D. Density
Correct answer: A
Rationale: Mass is a measure of the amount of matter in an object and remains constant regardless of changes in gravity. Weight, on the other hand, is a measure of the gravitational force acting on an object and varies with changes in gravity. Volume is the amount of space occupied by an object and can change with changes in gravity. Density is the mass of a substance per unit volume and can also change with changes in gravity if the volume changes. Therefore, the correct answer is mass as it remains the same regardless of the gravitational force acting on the object, making it an intrinsic property of the substance.
4. What is the primary function of coronary arteries?
- A. Delivering oxygenated blood throughout the body.
- B. Supplying oxygenated blood to the heart muscle itself.
- C. Carrying deoxygenated blood back to the heart.
- D. Regulating blood pressure through vasoconstriction and vasodilation.
Correct answer: B
Rationale: The primary function of coronary arteries is to supply oxygenated blood to the heart muscle itself. The heart is a muscle that needs a constant supply of oxygen and nutrients to function properly. Coronary arteries branch off the aorta and specifically deliver oxygenated blood to the heart muscle, ensuring its proper function. Choice A is incorrect because coronary arteries do not deliver blood throughout the entire body but specifically to the heart. Choice C is incorrect as coronary arteries carry oxygenated blood away from the heart. Choice D is incorrect as the primary function of the coronary arteries is not to regulate blood pressure but rather to provide oxygenated blood to the heart muscle.
5. How does the potential energy of an object change when it is compressed?
- A. Potential energy decreases
- B. Potential energy increases
- C. Potential energy remains constant
- D. Potential energy becomes zero
Correct answer: B
Rationale: When an object is compressed, its potential energy increases. This is because work is done on the object to compress it, resulting in an increase in potential energy stored in the object as it is compressed against an opposing force. The potential energy is transformed and stored within the object due to the work done during the compression process, leading to an increase in its potential energy. Choice A is incorrect because compression involves doing work on the object, increasing its potential energy. Choice C is incorrect because compression involves a change in position and potential energy. Choice D is incorrect because compression does not reduce potential energy to zero; rather, it increases it due to the work done in compressing the object.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access