ATI TEAS 7
TEAS Test 7 science quizlet
1. What happens to the gravitational potential energy of an object as it falls freely?
- A. It decreases
- B. It increases
- C. It remains constant
- D. It becomes zero
Correct answer: A
Rationale: The correct answer is A: 'It decreases.' When an object falls freely, its height decreases, resulting in a decrease in gravitational potential energy. The potential energy is converted into kinetic energy as the object accelerates due to gravity. This conversion process continues until the object reaches the ground or its lowest point, where the gravitational potential energy is minimal or zero. Choice B is incorrect because gravitational potential energy decreases, not increases, during free fall. Choice C is incorrect as gravitational potential energy changes due to the change in height. Choice D is incorrect as the gravitational potential energy does not instantly become zero but decreases gradually as the object falls.
2. Most catalysts found in biological systems are which of the following?
- A. Special lipids called cofactors.
- B. Special proteins called enzymes.
- C. Special lipids called enzymes.
- D. Special proteins called cofactors.
Correct answer: B
Rationale: Enzymes are special proteins that act as catalysts in biological systems. They accelerate chemical reactions by lowering the activation energy required for the reaction to occur. Enzymes play a critical role in the regulation of metabolic pathways and are essential for various biological processes. While some enzymes may require cofactors for activity, the enzymes themselves are the catalysts in biological systems. Therefore, choice B, special proteins called enzymes, is the most suitable answer. Choices A, C, and D are incorrect because enzymes, not lipids, are the primary catalysts in biological systems.
3. Which of the following is considered an intensive property?
- A. Mass
- B. Weight
- C. Volume
- D. Density
Correct answer: D
Rationale: Density is an intensive property because it does not depend on the amount of matter present. Intensive properties are independent of the quantity of the substance and remain constant regardless of the size or amount of the sample being measured. Mass, weight, and volume are extensive properties that depend on the amount of substance present. Mass and weight change with the amount of matter, while volume changes as the quantity of the substance changes. Therefore, they are not considered intensive properties.
4. Which hormone, produced by the pancreas, acts in opposition to insulin by increasing blood sugar levels?
- A. Insulin
- B. Glucagon
- C. Cortisol
- D. Thyroxine
Correct answer: B
Rationale: Glucagon is the correct answer. Produced by the pancreas, glucagon acts in opposition to insulin by increasing blood sugar levels. Glucagon promotes the breakdown of glycogen into glucose in the liver, leading to the release of glucose into the bloodstream. Insulin, on the other hand, lowers blood sugar levels by facilitating the uptake of glucose into cells. Cortisol is a hormone produced by the adrenal glands, not the pancreas, and is involved in stress response and metabolism. Thyroxine is a hormone produced by the thyroid gland and is primarily responsible for regulating metabolism.
5. What type of intermolecular force is responsible for the high surface tension of water?
- A. Hydrogen bonding
- B. London dispersion forces
- C. Ionic bonding
- D. Metallic bonding
Correct answer: A
Rationale: The high surface tension of water is primarily due to the strong hydrogen bonding between water molecules. Hydrogen bonding is a specific type of intermolecular force that occurs between a hydrogen atom covalently bonded to a highly electronegative atom, like oxygen in water, and another electronegative atom nearby. This unique interaction results in a strong attraction between water molecules at the surface, leading to the cohesive forces responsible for the high surface tension of water. Choices B, C, and D are incorrect because London dispersion forces, ionic bonding, and metallic bonding do not account for the high surface tension observed in water. London dispersion forces are relatively weaker intermolecular forces, while ionic and metallic bonding are types of intramolecular forces that do not directly contribute to the surface tension of water.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access