ATI TEAS 7
TEAS version 7 quizlet science
1. The liver plays a vital role in digestion. What is one of the main functions of the liver in the digestive system?
- A. Physical breakdown of food
- B. Production of digestive enzymes
- C. Storage and processing of nutrients
- D. Elimination of waste products
Correct answer: C
Rationale: The correct answer is C: Storage and processing of nutrients. The liver plays a crucial role in processing nutrients absorbed from the small intestine, storing glycogen, vitamins, and minerals, and regulating blood sugar levels by releasing or storing glucose as needed. Choices A, B, and D are incorrect because the physical breakdown of food primarily occurs in the mouth and stomach, the production of digestive enzymes is mainly carried out by the pancreas and small intestine, and the elimination of waste products is primarily managed by the large intestine and kidneys, not the liver.
2. What describes the change in direction of light when it passes through different mediums, such as air and water?
- A. Diffraction
- B. Reflection
- C. Refraction
- D. Dispersion
Correct answer: C
Rationale: Refraction is the change in direction of light as it moves from one medium to another, such as air to water or glass. This change occurs due to variations in the speed of light in each medium, causing the light rays to bend. When light passes through different mediums, it changes its path, a phenomenon known as refraction. Choice A, Diffraction, refers to the bending of waves around obstacles and the spreading of waves when passing through small openings, not the change in direction of light when moving between mediums. Choice B, Reflection, is the bouncing back of light rays from a surface into the same medium, not the change in direction when transitioning between different mediums. Choice D, Dispersion, involves the separation of light into its constituent colors based on their different wavelengths, not the change in direction of light when passing through different mediums.
3. How does electron configuration relate to the periodic table?
- A. Elements within the same period have identical electron configurations.
- B. Elements within the same group share similar electron configurations in their outermost shell.
- C. Electron configuration determines an element's position on the periodic table.
- D. An element's group on the periodic table is determined by the number of electron shells it possesses.
Correct answer: B
Rationale: Elements within the same group share similar electron configurations in their outermost shell. The periodic table is organized based on the number of electrons in the outermost energy level, known as valence electrons, which significantly influence an element's chemical properties. Elements within the same group have the same number of valence electrons, leading to comparable chemical behaviors. Choices A and D are incorrect because elements within the same period, not group, have identical electron configurations, and an element's group is primarily determined by the number of valence electrons and not the number of electron shells. Choice C is incorrect because while electron configuration is crucial for understanding an element's properties, it is not the sole factor determining its position on the periodic table.
4. Which of the following describes a typical gas?
- A. Indefinite shape and indefinite volume
- B. Indefinite shape and definite volume
- C. Definite shape and definite volume
- D. Definite shape and indefinite volume
Correct answer: B
Rationale: The correct answer is B: 'Indefinite shape and definite volume.' A gas does not have a definite shape as it takes the shape of its container, conforming to its surroundings. However, a gas does have a definite volume because it fills the entire volume of the container it occupies. This characteristic allows gases to expand to fill the available space provided by the container, while their volume remains constant within that container. Choice A is incorrect because gases do not have an indefinite volume but rather a definite volume. Choice C is incorrect as gases do not have a definite shape but take the shape of their container. Choice D is incorrect as gases do not have a definite shape and their volume is definite, not indefinite.
5. What substance is required to drive the sliding filament process during muscle contraction?
- A. ATP
- B. Hormone
- C. Potassium
- D. Water
Correct answer: A
Rationale: The substance required to drive the sliding filament process during muscle contraction is ATP (adenosine triphosphate). ATP provides the energy needed for muscle contraction by enabling the myosin heads to bind to actin and generate force. This energy release drives the sliding of the filaments, causing muscle fibers to contract. Hormones, potassium, and water do not directly drive the sliding filament process in muscle contraction. Hormones are signaling molecules that regulate various physiological processes but do not directly provide energy for muscle contraction. Potassium is an electrolyte important for nerve and muscle function but is not the primary driver of the sliding filament process. Water is essential for overall hydration and bodily functions but does not directly participate in the muscle contraction process.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access