ATI TEAS 7
TEAS Test 7 science
1. In nuclear fusion, where does the released energy originate from?
- A. The fission of heavy nuclei
- B. The binding energy released during the fusion of light nuclei
- C. Electronic transitions within atoms
- D. Matter-antimatter annihilation
Correct answer: B
Rationale: The correct answer is B: 'The binding energy released during the fusion of light nuclei.' Nuclear fusion involves the combination of light nuclei to form a heavier nucleus, releasing energy in the process. This energy arises from the binding energy that keeps the nucleus intact. As lighter nuclei fuse, they create a more stable nucleus, and the excess energy is emitted as radiation. This fundamental process is the primary source of energy in stars and holds promise as a potential future energy source on Earth. Choices A, C, and D are incorrect. Choice A, 'The fission of heavy nuclei,' is related to nuclear fission, not fusion. Choice C, 'Electronic transitions within atoms,' refers to energy release in atomic transitions, not nuclear fusion. Choice D, 'Matter-antimatter annihilation,' is a process where matter and antimatter collide, converting their mass into energy, but it is not the energy source for nuclear fusion.
2. Which of the following quantities do catalysts alter to control the rate of a chemical reaction?
- A. Substrate energy
- B. Activation energy
- C. Inhibitor energy
- D. Promoter energy
Correct answer: B
Rationale: The correct answer is B: Activation energy. Catalysts function by reducing the activation energy needed for a chemical reaction to proceed. By lowering the activation energy, catalysts facilitate the reaction without being consumed themselves. Substrate energy, inhibitors, and promoters are not directly altered by catalysts in the same way activation energy is. Substrate energy refers to the energy of the reactants, which is not altered by catalysts. Inhibitors increase the activation energy required for a reaction, while promoters enhance the effectiveness of a catalyst but do not represent a quantity altered by catalysts.
3. Which of the following is a weak acid commonly found in citrus fruits?
- A. Sulfuric acid (H₂SO₄)
- B. Hydrochloric acid (HCl)
- C. Citric acid
- D. Nitric acid (HNO₃)
Correct answer: C
Rationale: Citric acid is a weak acid commonly found in citrus fruits like lemons, oranges, and limes. It is responsible for the sour taste in these fruits. Sulfuric acid (option A), hydrochloric acid (option B), and nitric acid (option D) are all strong acids that are typically used in laboratory settings and industrial processes, not naturally found in citrus fruits. Therefore, the correct answer is option C.
4. What is the main function of dietary fiber in the digestive system?
- A. To provide energy
- B. To break down fats
- C. To promote gut bacteria growth
- D. To aid in absorption of nutrients
Correct answer: C
Rationale: Dietary fiber refers to the indigestible portion of plant foods that passes relatively intact through the digestive system. While fiber does not directly provide energy to the body, it plays a crucial role in promoting the growth of beneficial gut bacteria. These bacteria help in the fermentation of fiber, producing short-chain fatty acids that can be used as an energy source by the body. Additionally, fiber aids in regulating bowel movements, maintaining gut health, and supporting overall digestive function. The functions described in the incorrect choices do not align with the primary role of dietary fiber in the digestive system. Choice A is incorrect because fiber itself is not a direct energy source. Choice B is incorrect as fiber does not break down fats. Choice D is incorrect because while fiber affects nutrient absorption indirectly by supporting gut health, its primary role is not to aid in the absorption of nutrients.
5. Which statement is TRUE about valence electrons?
- A. They are located in the innermost electron shell.
- B. They have the highest binding energy to the nucleus.
- C. They are most likely to participate in chemical bonding.
- D. They have no influence on the element's chemical properties.
Correct answer: C
Rationale: Valence electrons are the outermost electrons in an atom's electron cloud and are crucial in forming chemical bonds with other atoms. These electrons determine the reactivity and chemical properties of an element, making option C the correct statement. Option A is incorrect as valence electrons are found in the outer shell, not the innermost shell. Option B is incorrect because valence electrons have lower binding energy compared to inner electrons. Option D is incorrect since valence electrons play a significant role in an element's chemical behavior.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access