ATI TEAS 7
Mometrix TEAS 7 science practice test
1. The transfer of energy through feeding relationships in an ecosystem is called a:
- A. Food Chain
- B. Food Web
- C. Habitat
- D. Biome
Correct answer: A
Rationale: A food chain is a linear sequence of organisms where each organism consumes the one below it and is consumed by the one above it. This transfer of energy through feeding relationships is a fundamental concept in ecology to understand how energy flows through an ecosystem. In a food chain, energy is transferred from producers (plants) to primary consumers (herbivores), then to secondary consumers (carnivores), and so on. Each step in the food chain represents a trophic level, and energy is lost as heat at each level, resulting in a pyramid-shaped energy flow. Food webs, on the other hand, represent a more complex network of interconnected food chains within an ecosystem. Habitats refer to the specific environments where organisms live, and biomes are large geographical areas characterized by specific climates and vegetation types. Therefore, the correct answer is 'Food Chain' as it specifically describes the linear transfer of energy through feeding relationships in an ecosystem.
2. What is a primary function of red blood cells?
- A. To fight infection
- B. To carry oxygen
- C. To produce antibodies
- D. To transport waste
Correct answer: B
Rationale: The main function of red blood cells is to carry oxygen from the lungs to all the body's tissues and organs, where it is needed for cellular functions and metabolism. This process is essential for sustaining life and providing energy to cells. Choice A is incorrect because fighting infection is primarily done by white blood cells. Choice C is incorrect because antibody production is mainly carried out by specialized white blood cells. Choice D is incorrect as the primary role of red blood cells is not to transport waste, but rather to transport oxygen and some carbon dioxide.
3. Which part of the brain controls balance and coordination?
- A. Cerebrum
- B. Cerebellum
- C. Medulla
- D. Thalamus
Correct answer: B
Rationale: The cerebellum is the correct answer as it is the part of the brain responsible for controlling balance and coordination in the body. It receives input from various parts of the brain, spinal cord, and sensory systems to help coordinate voluntary movements. The cerebrum (choice A) is mainly involved in higher brain functions such as thinking, decision-making, and voluntary movements but not specifically balance and coordination. The medulla (choice C) is essential for functions like breathing, heart rate, and blood pressure regulation but not primarily for balance and coordination. The thalamus (choice D) acts as a relay station for sensory information but is not primarily responsible for balance and coordination.
4. Which of the following is a characteristic of an interneuron?
- A. Forms neural circuits
- B. Interacts with effectors
- C. Sends impulses to the CNS
- D. Functions as an efferent nerve cell
Correct answer: A
Rationale: The correct characteristic of an interneuron is that it forms neural circuits, connecting sensory and motor neurons within the central nervous system. Interneurons facilitate communication between different neurons in the central nervous system, helping in the processing and integration of signals. Choice B is incorrect as interneurons primarily interact with other neurons, not effectors. Choice C is incorrect as interneurons typically do not send impulses to the CNS; they operate within the CNS. Choice D is incorrect as interneurons are not efferent nerve cells; they are mainly involved in processing signals within the CNS rather than transmitting signals to effectors.
5. Passive transport does not require energy input from the cell. Which of the following is an example of passive transport?
- A. Active transport of ions across a membrane
- B. Diffusion of small molecules across a concentration gradient
- C. Movement of large molecules using vesicles
- D. Endocytosis of particles into the cell
Correct answer: B
Rationale: Passive transport refers to the movement of molecules across a cell membrane without the input of energy. Diffusion of small molecules across a concentration gradient is a classic example of passive transport, as it occurs spontaneously from an area of high concentration to an area of low concentration. Active transport (option A) requires energy input in the form of ATP to move substances against their concentration gradient. Movement of large molecules using vesicles (option C) involves processes like endocytosis and exocytosis that require energy in the form of ATP. Endocytosis of particles into the cell (option D) is an active process that requires energy expenditure by the cell to engulf and internalize extracellular substances.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access