how many molecules of nadph and atp are required to reduce 6 molecules of co2 to glucose via photosynthesis
Logo

Nursing Elites

ATI TEAS 7

Practice TEAS Science Test

1. How many molecules of NADPH and ATP are required to reduce 6 molecules of CO2 to glucose via photosynthesis?

Correct answer: B

Rationale: During photosynthesis, 12 molecules of NADPH and 18 molecules of ATP are required to reduce 6 molecules of CO2 to glucose. NADPH and ATP are essential energy carriers in the process of photosynthesis. Choice A is incorrect because it underestimates the required molecules of both NADPH and ATP. Choices C and D overestimate the number of molecules needed, making them incorrect answers.

2. Which type of RNA carries the genetic code from DNA to ribosomes?

Correct answer: C

Rationale: - Messenger RNA (mRNA) carries the genetic information from DNA in the cell's nucleus to the ribosomes in the cytoplasm, where protein synthesis occurs. - Ribosomal RNA (rRNA) is a component of the ribosomes where protein synthesis takes place. - Transfer RNA (tRNA) is responsible for bringing amino acids to the ribosomes during protein synthesis. - Deoxyribonucleic acid (DNA) is the genetic material that contains the instructions for building and maintaining an organism. DNA is transcribed into mRNA before being translated into proteins.

3. Which of the following is an example of a fibrous protein?

Correct answer: D

Rationale: A) Insulin is a hormone, not a fibrous protein. It is produced in the pancreas and regulates blood sugar levels. B) Keratin is a fibrous structural protein found in hair, nails, and the outer skin layer, providing strength and protection. C) Hemoglobin is a globular protein in red blood cells responsible for oxygen transport; it is not fibrous. D) Collagen is a fibrous protein found in tendons, ligaments, and skin, offering strength and structure to connective tissues. Therefore, the correct answer is collagen, making it the main component of various connective tissues.

4. How does an increase in mass affect the force required to produce the same acceleration on an object?

Correct answer: A

Rationale: The correct answer is A, 'Increases force required.' According to Newton's second law of motion, force is directly proportional to mass and acceleration (F = ma). Therefore, an increase in mass will require an increase in force to produce the same acceleration on an object. Choice B is incorrect because an increase in mass does not decrease the force required; it increases it. Choice C is incorrect as increasing mass does affect the force required. Choice D is incorrect as the relationship between mass and force is predictable according to Newton's laws of motion.

5. Passive transport does not require energy input from the cell. Which of the following is an example of passive transport?

Correct answer: B

Rationale: Passive transport refers to the movement of molecules across a cell membrane without the input of energy. Diffusion of small molecules across a concentration gradient is a classic example of passive transport, as it occurs spontaneously from an area of high concentration to an area of low concentration. Active transport (option A) requires energy input in the form of ATP to move substances against their concentration gradient. Movement of large molecules using vesicles (option C) involves processes like endocytosis and exocytosis that require energy in the form of ATP. Endocytosis of particles into the cell (option D) is an active process that requires energy expenditure by the cell to engulf and internalize extracellular substances.

Similar Questions

What is the process by which cells respond to external stimuli, such as chemicals, temperature, or touch, called?
Which of the following correctly describes mitosis?
At which step in the scientific method might a scientist create a model?
Which of the following is an example of a zoonotic disease?
Which element is used in semiconductors like computer chips and solar panels?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses