how many molecules of nadph and atp are required to reduce 6 molecules of co2 to glucose via photosynthesis
Logo

Nursing Elites

ATI TEAS 7

Practice TEAS Science Test

1. How many molecules of NADPH and ATP are required to reduce 6 molecules of CO2 to glucose via photosynthesis?

Correct answer: B

Rationale: During photosynthesis, 12 molecules of NADPH and 18 molecules of ATP are required to reduce 6 molecules of CO2 to glucose. NADPH and ATP are essential energy carriers in the process of photosynthesis. Choice A is incorrect because it underestimates the required molecules of both NADPH and ATP. Choices C and D overestimate the number of molecules needed, making them incorrect answers.

2. Which of the following describes the path through which air moves during inhalation?

Correct answer: A

Rationale: The correct path through which air moves during inhalation is from the mouth/nose > pharynx > larynx > trachea > bronchi > bronchioles > alveoli. This sequence accurately represents the typical route air takes as it travels from the external environment into the lungs to facilitate gas exchange in the alveoli. Choice B is incorrect as it reverses the order of bronchioles and alveoli. Choice C is incorrect as it starts with mouth/nose but then incorrectly lists lungs before trachea. Choice D is incorrect as it reverses the entire sequence of the respiratory pathway, starting with alveoli instead of mouth/nose.

3. What type of bond is present in salt?

Correct answer: A

Rationale: The correct answer is 'Ionic.' Ionic bonds are formed in salts through the transfer of electrons between atoms, leading to the attraction between positively and negatively charged ions. This results in a stable ionic compound, such as common table salt (sodium chloride). Nonpolar covalent, polar covalent, and peptide bonds are not typically found in salts. Nonpolar covalent bonds involve the equal sharing of electrons, polar covalent bonds involve unequal sharing of electrons, and peptide bonds are specific to proteins, not salts.

4. What is the term for the process of a liquid changing into a gas?

Correct answer: A

Rationale: The correct answer is 'Evaporation.' Evaporation is the process by which a liquid changes into a gas at any temperature, while boiling specifically refers to the rapid vaporization of a liquid only at its boiling point. Condensation is the opposite process of gas turning into a liquid, and sublimation is the direct transition from solid to gas without passing through the liquid phase.

5. Which valve prevents the return of blood into the right ventricle?

Correct answer: A

Rationale: The correct answer is A: Pulmonary semilunar valve. The pulmonary semilunar valve is located between the right ventricle and the pulmonary artery. It opens to allow blood to be pumped into the pulmonary artery but closes to prevent blood from returning back into the right ventricle. The aortic semilunar valve is located between the left ventricle and the aorta. The tricuspid valve is located between the right atrium and right ventricle, and the mitral valve is located between the left atrium and left ventricle. Therefore, the pulmonary semilunar valve is the specific valve responsible for preventing the backflow of blood into the right ventricle during the cardiac cycle.

Similar Questions

Which of the following is part of the cardiovascular system?
What is the main difference between a telescope and a microscope?
What is an electrically charged atom called?
What is the anatomical term for the back of the body? Example: Shoulder blade.
Which of the following organelles is responsible for protein production in the cell?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses