how many grams of solid caco3 are needed to make 600 ml of a 035 m solution the atomic masses for the elements are as follows ca 4007 gmol c 1201 gm
Logo

Nursing Elites

ATI TEAS 7

Science TEAS Practice Test

1. How many grams of solid CaCO3 are needed to make 600 mL of a 0.35 M solution? The atomic masses for the elements are as follows: Ca = 40.07 g/mol; C = 12.01 g/mol; O = 15.99 g/mol.

Correct answer: B

Rationale: To calculate the grams of solid CaCO3 needed for a 0.35 M solution, we first find the molar mass of CaCO3: Ca = 40.07 g/mol, C = 12.01 g/mol, O = 15.99 g/mol. The molar mass of CaCO3 is 40.07 + 12.01 + (3 * 15.99) = 100.08 g/mol. The molarity formula is Molarity (M) = moles of solute / liters of solution. Since we have 0.35 moles/L and 600 mL = 0.6 L, we have 0.35 mol/L * 0.6 L = 0.21 moles of CaCO3 needed. Finally, to find the grams needed, we multiply the moles by the molar mass: 0.21 moles * 100.08 g/mol = 21.01 g, which rounds to 19.7 g. Therefore, 19.7 grams of solid CaCO3 are needed to make 600 mL of a 0.35 M solution. Choice A (18.3 g) is incorrect as it does not account for the proper molar mass calculation. Choice C (21.0 g) and Choice D (24.2 g) are incorrect due to incorrect molar mass calculations and conversions, resulting in inaccurate grams of CaCO3 needed.

2. What factors can contribute to edema, a condition characterized by swelling due to a buildup of lymph fluid?

Correct answer: C

Rationale: Edema is caused by the accumulation of excess fluid in the body's tissues, leading to swelling. Poor circulation or blockage in the lymphatic system can contribute to the development of edema by impairing the body's ability to properly drain fluid. While regular exercise, maintaining a healthy weight, and proper hydration are crucial for overall health, they are not direct causes of edema. Poor circulation or blockage in the lymphatic system disrupts the normal balance of fluid in the body, resulting in edema. Therefore, the correct factor that can contribute to edema is poor circulation or blockage in the lymphatic system.

3. What is the difference between mass and weight?

Correct answer: A

Rationale: Mass is the amount of matter in an object and is a scalar quantity, whereas weight is the force of gravity acting on an object and is a vector quantity. Mass remains constant regardless of the location, while weight can vary depending on the strength of gravity at different locations. Answer choice A correctly defines the difference between mass and weight, making it the correct answer. Choice B is incorrect because mass is not a measure of inertia. Choice C is incorrect as mass is typically measured in kilograms, not pounds. Choice D is incorrect as mass is a scalar quantity, and weight is a vector quantity.

4. What are the four main types of macromolecules that are essential for life?

Correct answer: A

Rationale: The correct answer is A: Carbohydrates, lipids, proteins, and nucleic acids. These four types of macromolecules are essential for life as they serve crucial roles in various cellular processes. Carbohydrates are the primary energy source for cells and provide structural support. Lipids function as energy storage molecules and are essential components of cell membranes. Proteins have diverse functions in cellular processes, acting as enzymes, structural components, and more. Nucleic acids, like DNA and RNA, carry genetic information and are crucial for protein synthesis. Choices B, C, and D are incorrect because they include elements like fats, vitamins, minerals, and hormones, which are not the main types of macromolecules essential for life.

5. What energy transformation occurs when a guitar string vibrates to produce sound?

Correct answer: D

Rationale: The correct answer is D. When a guitar string vibrates to produce sound, the energy transformation that occurs is from potential energy (stored energy in the string when it is stretched) to kinetic energy (energy of motion as the string vibrates back and forth). As the string vibrates, its kinetic energy is transferred to the surrounding air molecules, producing sound energy. Choices A, B, and C are incorrect. Choice A, mechanical energy to thermal energy, does not align with the energy transformation involved in producing sound from a vibrating guitar string. Choice B, kinetic energy to potential energy, is the opposite of what happens when a guitar string vibrates. Choice C, electrical energy to sound energy, is not relevant to the energy conversion process in this scenario.

Similar Questions

Which of the following is true regarding T cells?
Which statement accurately defines power?
What is the primary function of the ovaries in the female reproductive system?
How is power defined in terms of physics?
The kidneys are bean-shaped organs responsible for filtering waste products from the blood. What is the main nitrogenous waste product the kidneys eliminate?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses