during inhalation which muscle contracts to increase the volume of the thoracic cavity allowing air to flow into the lungs
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 science practice

1. During inhalation, which muscle contracts to increase the volume of the thoracic cavity, allowing air to flow into the lungs?

Correct answer: A

Rationale: The diaphragm is the primary muscle responsible for inhalation. When it contracts, it moves downward, increasing the volume of the thoracic cavity and creating a pressure gradient that allows air to flow into the lungs. While the intercostal muscles also play a role in expanding the chest cavity during inhalation, the diaphragm is the main muscle involved in this process. Abdominal muscles and pectoral muscles are not directly involved in the process of inhalation.

2. What is the relationship between the wavelength (λ) and frequency (f) of a wave with a constant speed (v)?

Correct answer: A

Rationale: The relationship between wavelength (λ), frequency (f), and speed (v) of a wave is given by the formula λ = v / f. This formula is derived from the wave equation v = fλ, where v is the speed of the wave, f is the frequency, and λ is the wavelength. By rearranging the equation, we get λ = v / f, indicating that the wavelength is inversely proportional to the frequency when the speed of the wave is constant. Therefore, choice A, λ = v / f, correctly represents the relationship between wavelength and frequency when the speed of the wave is held constant. Choice B, λ = f / v, is incorrect because it represents an inverse relationship between wavelength and speed, which is not the case. Choice C, λ = vf, is incorrect as it implies a direct relationship between wavelength, frequency, and speed, which is not accurate. Choice D, λ is independent of f and v, is incorrect as both frequency and speed affect the wavelength of a wave, as shown by the correct formula λ = v / f.

3. What term describes the maximum displacement of particles from their rest position in a wave?

Correct answer: C

Rationale: The term that describes the maximum displacement of particles from their rest position in a wave is called the amplitude. Amplitude is a measure of the strength or intensity of a wave and is represented by the height of the wave from the rest position to the crest (or trough) of the wave. Frequency (A) refers to the number of complete wavelengths that pass a point in a given time. Wavelength (B) is the distance between two consecutive crests (or troughs) of a wave. Velocity (D) is the speed of the wave, not the maximum displacement of particles from their rest position.

4. How can a single gene mutation lead to multiple phenotypes depending on the organism?

Correct answer: A

Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.

5. Which of the following is an example of a long bone in the human body?

Correct answer: B

Rationale: The correct answer is B, Femur. The femur is the longest and strongest bone in the human body, located in the thigh region. Long bones are characterized by their elongated shape, such as the femur, which provides support, strength, and mobility. Choices A, C, and D are incorrect because carpal bones (A) are short bones found in the wrist, tarsal bones (C) are short bones found in the ankle, and metacarpal bones (D) are classified as long bones, but they are shorter than the femur and mainly found in the hand.

Similar Questions

Which of the following is the space between the lungs?
Which of the following nutrients is essential for muscle growth and repair?
What is the difference between polygenic inheritance and pleiotropy?
What is the primary function of the lymphatic system?
What is the formula to calculate kinetic energy?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses