ATI TEAS 7
ATI TEAS 7 Science
1. What is the maximum volume of air that the lungs can hold after a full forced inhalation?
- A. Inspiratory capacity
- B. Tidal volume
- C. Total lung capacity
- D. Vital capacity
Correct answer: C
Rationale: Total lung capacity is the correct term for the maximum volume of air that the lungs can hold after a full forced inhalation. It represents the sum of all lung volumes, including tidal volume, inspiratory reserve volume, and expiratory reserve volume. Inspiratory capacity refers to the maximum volume of air inspired from the end-expiratory level. Tidal volume is the volume of air inspired or expired during normal breathing. Vital capacity is the maximum volume of air that can be exhaled after a maximum inhalation, not the total volume the lungs can hold.
2. Which of the following basic mechanisms of evolution is described as the process where organisms with an advantageous trait survive more often and produce more offspring than organisms without the advantageous trait?
- A. gene flow
- B. genetic drift
- C. mutation
- D. natural selection
Correct answer: D
Rationale: Natural selection is the basic mechanism of evolution that explains how organisms with advantageous traits are more likely to survive and reproduce in a given environment. This leads to the passing on of these favorable traits to their offspring, causing these traits to become more common in the population over time, resulting in evolutionary change. Natural selection is driven by environmental pressures that support the survival and reproduction of individuals with specific traits. Gene flow refers to the movement of genes between populations, genetic drift is the change in allele frequencies due to random events, and mutation is the source of genetic variation but is not the process by which advantageous traits become more prevalent in a population.
3. How do hydrogen bonds in water affect its characteristics?
- A. Hydrogen bonds are not polar enough to attract non-polar molecules.
- B. Hydrogen bonds cause water to be less dense when it is a solid than when it is a liquid.
- C. Hydrogen bonds cause water to have high surface tension, allowing some organisms to move across it.
- D. Hydrogen bonds cause water to be a good solvent.
Correct answer: C
Rationale: Hydrogen bonds in water contribute to its high surface tension, enabling some organisms to move across the water's surface. This property is essential for certain insects and small animals that rely on surface tension to move or stay afloat on water. Choice A is incorrect because hydrogen bonds are polar and can attract polar and other charged molecules. Choice B is incorrect as hydrogen bonds make ice less dense than liquid water, which is a unique property. Choice D is incorrect as the ability of water to act as a good solvent is primarily due to its polarity, not just hydrogen bonding.
4. A pendulum swings back and forth. What type of energy conversion occurs during its motion?
- A. Potential energy to kinetic energy and vice versa
- B. Thermal energy to mechanical energy and vice versa
- C. Chemical energy to electrical energy and vice versa
- D. Nuclear energy to radiant energy and vice versa
Correct answer: A
Rationale: As the pendulum swings back and forth, it undergoes a continuous conversion between potential energy (at the highest point of the swing) and kinetic energy (at the lowest point of the swing). At the highest point, the pendulum has maximum potential energy due to its height above the ground. As it swings down, this potential energy is converted into kinetic energy, which is the energy of motion. At the lowest point of the swing, the pendulum has maximum kinetic energy and minimal potential energy. The process repeats as the pendulum swings back in the opposite direction, demonstrating the conversion between potential and kinetic energy. Choices B, C, and D are incorrect because the energy conversion in a swinging pendulum primarily involves changes between potential and kinetic energy, not thermal, chemical, electrical, nuclear, or radiant energy.
5. Which of the following terms refers to the abnormal sound heard during a stethoscope examination, potentially indicating a heart valve issue?
- A. Tachycardia
- B. Bradycardia
- C. Heart murmur
- D. Arrhythmia
Correct answer: C
Rationale: A heart murmur is an abnormal sound heard during a stethoscope examination of the heart. It can indicate issues with the heart valves, such as stenosis or regurgitation. Tachycardia refers to a fast heart rate, bradycardia refers to a slow heart rate, and arrhythmia refers to an irregular heart rhythm. Therefore, the correct answer is 'Heart murmur,' as it specifically relates to the abnormal sound heard during a stethoscope examination that may signal a heart valve issue.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access