ATI TEAS 7
ATI TEAS 7 science review
1. During antibiotic use, bacteria can evolve resistance. This is an example of:
- A. Coevolution (two species influencing each other's evolution)
- B. Convergent evolution (unrelated organisms evolving similar traits)
- C. Macroevolution (large-scale evolutionary change)
- D. Artificial selection acting on a natural process
Correct answer: D
Rationale: The process of bacteria evolving resistance to antibiotics due to the selective pressure exerted by the antibiotics is an example of artificial selection (human intervention selecting for certain traits) acting on a natural process (bacterial evolution). Antibiotic use creates a selective pressure that favors the survival and reproduction of bacteria with resistance traits, leading to the evolution of antibiotic-resistant strains. - Coevolution (option A) refers to the influence of two species on each other's evolution, which is not the case in the scenario described in the question. - Convergent evolution (option B) involves unrelated organisms evolving similar traits due to similar environmental pressures, which is not directly applicable to the situation of bacteria evolving resistance to antibiotics. - Macroevolution (option C) refers to large-scale evolutionary changes over long periods, which is not specifically demonstrated in the context of bacteria evolving resistance during antibiotic use.
2. Which of the following statements is true regarding the ventricles of the heart?
- A. The left ventricle pumps blood into the aorta
- B. The right ventricle pumps blood into the pulmonary trunk
- C. Ventricles are the discharging chambers of the heart
- D. All of the above
Correct answer: D
Rationale: All of these statements are true regarding the ventricles of the heart. The left ventricle does indeed pump oxygenated blood into the aorta, while the right ventricle pumps deoxygenated blood into the pulmonary trunk. Ventricles are indeed the discharging chambers of the heart, responsible for pumping blood out into the circulatory system. Therefore, as all the statements are accurate, the correct answer is 'All of the above.' Choices A, B, and C are all correct statements about the ventricles, making them incorrect answers in isolation.
3. Which of the following is the main organ responsible for regulating sleep?
- A. Thalamus
- B. Hypothalamus
- C. Pituitary gland
- D. Pineal gland
Correct answer: B
Rationale: The main organ responsible for regulating sleep is the hypothalamus. The hypothalamus plays a crucial role in controlling the body's circadian rhythm, which is the internal clock that regulates the sleep-wake cycle. It receives input from the eyes about light and darkness, aiding in determining when it's time to sleep or wake up. Additionally, the hypothalamus regulates the production of melatonin by the pineal gland, a hormone that helps control sleep patterns. While the thalamus relays sensory information to the brain, the pituitary gland is primarily responsible for hormone production and release, and the pineal gland produces melatonin under the control of the hypothalamus. Therefore, the hypothalamus is the correct choice as the main organ involved in sleep regulation.
4. How does the stability of an atom's nucleus influence its radioactive decay?
- A. Stable nuclei never undergo radioactive decay.
- B. Unstable nuclei are more likely to decay through various processes.
- C. Decay releases energy, making stable nuclei more prone to it.
- D. The element's position on the periodic table determines its decay rate.
Correct answer: B
Rationale: Unstable nuclei are more likely to decay through various processes. The stability of an atom's nucleus is a crucial factor in determining whether it will undergo radioactive decay. Unstable nuclei have an excess of either protons or neutrons, causing an imbalance in the nucleus. To achieve a more stable configuration, these nuclei will undergo radioactive decay by emitting particles or energy. On the contrary, stable nuclei are less likely to undergo radioactive decay as they possess a balanced number of protons and neutrons. Choice A is incorrect because stable nuclei can still undergo radioactive decay, albeit less frequently. Choice C is incorrect as decay does not make stable nuclei more prone to it; rather, it stabilizes them. Choice D is incorrect because an element's decay rate is primarily determined by the nucleus's stability, not its position on the periodic table.
5. What is the main component that gives bones their rigidity and hardness?
- A. Collagen
- B. Calcium phosphate
- C. Cartilage
- D. Ligaments
Correct answer: B
Rationale: Calcium phosphate is the main component that gives bones their rigidity and hardness. It combines with calcium hydroxide to form hydroxyapatite crystals, which provide strength and structure to bones. Collagen, on the other hand, provides flexibility and tensile strength. Cartilage is a type of connective tissue found in joints, and ligaments are fibrous tissues that connect bones to other bones, but they do not contribute to the rigidity and hardness of bones.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access