ATI TEAS 7
TEAS 7 practice test free science
1. What does the innate immune system provide?
- A. Nonspecific, immediate defense against pathogens
- B. Specific, long-term immune response through memory cells
- C. Both (a) and (b)
- D. Neither (a) nor (b)
Correct answer: A
Rationale: The correct answer is A. The innate immune system provides nonspecific, immediate defense against pathogens. It is the body's first line of defense in responding to infections and does not involve memory cells or specific long-term immune responses like the adaptive immune system. Choice B is incorrect because specific, long-term immune responses through memory cells are characteristics of the adaptive immune system, not the innate immune system. Choice C is incorrect because the innate immune system does not provide specific, long-term immune responses. Choice D is incorrect because the innate immune system does provide an immediate defense against pathogens.
2. What type of intermolecular force is responsible for the high surface tension of water?
- A. Hydrogen bonding
- B. London dispersion forces
- C. Ionic bonding
- D. Metallic bonding
Correct answer: A
Rationale: The high surface tension of water is primarily due to the strong hydrogen bonding between water molecules. Hydrogen bonding is a specific type of intermolecular force that occurs between a hydrogen atom covalently bonded to a highly electronegative atom, like oxygen in water, and another electronegative atom nearby. This unique interaction results in a strong attraction between water molecules at the surface, leading to the cohesive forces responsible for the high surface tension of water. Choices B, C, and D are incorrect because London dispersion forces, ionic bonding, and metallic bonding do not account for the high surface tension observed in water. London dispersion forces are relatively weaker intermolecular forces, while ionic and metallic bonding are types of intramolecular forces that do not directly contribute to the surface tension of water.
3. What is the Pauli exclusion principle?
- A. The principle that electrons fill orbitals in order of increasing energy.
- B. The principle that electrons cannot occupy the same orbital with the same spin.
- C. The principle that the maximum number of electrons in an orbital is 2n^2, where n is the energy level of the orbital.
- D. The principle that the attractive force between an electron and the nucleus is inversely proportional to the distance between them.
Correct answer: B
Rationale: The Pauli exclusion principle states that no two electrons in an atom can have the same set of four quantum numbers. This principle leads to the rule that electrons must have opposite spins when occupying the same orbital. Therefore, electrons cannot occupy the same orbital with the same spin, as stated in option B. Option A is incorrect as it refers to the Aufbau principle, which describes the order in which electrons fill orbitals based on increasing energy. Option C is incorrect as it provides the formula for the maximum number of electrons in an orbital based on the energy level, not the Pauli exclusion principle. Option D is incorrect as it describes Coulomb's law, which deals with the electrostatic force between charged particles, not the Pauli exclusion principle.
4. Which of the following best describes the process of osmosis?
- A. Movement of molecules against their concentration gradient
- B. Movement of water across a selectively permeable membrane
- C. Movement of water and solutes together
- D. Movement of large molecules through a membrane
Correct answer: B
Rationale: The correct answer is B. Osmosis is the process where water moves across a selectively permeable membrane from an area of low solute concentration to an area of high solute concentration. Choice A is incorrect because osmosis does not involve movement against the concentration gradient. Choice C is incorrect because osmosis primarily involves the movement of water, not water and solutes together. Choice D is incorrect as osmosis specifically refers to the movement of water molecules, not large molecules, through a membrane.
5. Diabetic nephropathy, a complication of diabetes, affects the:
- A. Ureters
- B. Bladder
- C. Urethra
- D. Nephrons
Correct answer: D
Rationale: Diabetic nephropathy, a complication of diabetes, affects the nephrons. Nephrons are the functional units of the kidneys responsible for filtering blood and producing urine. The high blood sugar levels associated with diabetes can damage the nephrons over time, leading to kidney dysfunction and, ultimately, kidney failure. Choices A, B, and C are incorrect because diabetic nephropathy primarily impacts the nephrons in the kidneys, not the ureters, bladder, or urethra.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access