ATI TEAS 7
ATI TEAS Practice Science Test
1. How many electrons are typically found in each shell of a neutral aluminum atom with 13 electrons in its electron cloud?
- A. 6 in the first shell, 7 in the second shell
- B. 2 in the first shell, 11 in the second shell
- C. 2 in the first shell, 8 in the second shell, 3 in the third shell
- D. 3 in the first shell, 5 in the second shell, 5 in the third shell
Correct answer: C
Rationale: In a neutral aluminum atom with 13 electrons, the electron distribution typically follows the electron shell filling order based on the Aufbau principle. The first shell can hold a maximum of 2 electrons, the second shell can hold up to 8 electrons, and the third shell can hold up to 8 electrons as well. Therefore, the distribution would be 2 electrons in the first shell, 8 electrons in the second shell, and 3 electrons in the third shell, totaling 13 electrons. Choice A is incorrect as it exceeds the maximum number of electrons the shells can hold. Choice B is incorrect as it does not distribute the electrons correctly among the shells. Choice D is incorrect as it also does not distribute the electrons correctly among the shells.
2. Which group of elements is known for their reactivity and ability to form strong bonds with other elements?
- A. Noble gases
- B. Halogens
- C. Alkali metals
- D. Transition metals
Correct answer: B
Rationale: Halogens are a group of elements in the periodic table known for their high reactivity and ability to form strong bonds with other elements. They possess seven valence electrons, requiring only one more electron to achieve a stable electron configuration, making them highly reactive. Halogens readily form compounds with other elements by gaining an electron to achieve a full outer shell, resulting in the formation of strong covalent bonds. Noble gases (option A), on the other hand, are known for their inertness and stable electron configurations, making them unlikely to form bonds. Alkali metals (option C) are highly reactive but do not form bonds as strong as halogens. Transition metals (option D) are recognized for their variable oxidation states and ability to create complex ions but are not as reactive as halogens when it comes to bond formation.
3. What is the structure surrounding and protecting the testes, maintaining the optimal temperature for sperm production?
- A. Epididymis
- B. Vas deferens
- C. Scrotum
- D. Prostate gland
Correct answer: C
Rationale: The scrotum is the structure that surrounds and protects the testes. It plays a vital role in maintaining an optimal temperature for sperm production by adjusting the distance of the testes from the body to regulate the effects of external temperature changes. This mechanism helps to safeguard the viability and quality of sperm by ensuring they develop at the right temperature. The epididymis (Choice A) is a coiled tube where sperm mature and are stored, not the structure surrounding the testes. The vas deferens (Choice B) is a duct that carries sperm from the testes to the urethra, not the protective structure around the testes. The prostate gland (Choice D) is part of the male reproductive system, responsible for secreting fluids that nourish and protect sperm, but it is not the structure that surrounds and protects the testes for sperm production.
4. Which organelle in the cell is responsible for protein synthesis?
- A. Ribosome
- B. Nucleus
- C. Mitochondrion
- D. Golgi apparatus
Correct answer: A
Rationale: The correct answer is A: Ribosome. Ribosomes are the organelles responsible for protein synthesis in the cell. They are the cellular machinery where translation, the process of assembling proteins from amino acids based on mRNA sequences, occurs. Ribosomes can be found floating freely in the cytoplasm or attached to the endoplasmic reticulum. The nucleus (choice B) houses DNA but is not directly involved in protein synthesis. Mitochondria (choice C) are responsible for energy production through cellular respiration, not protein synthesis. The Golgi apparatus (choice D) is involved in modifying, sorting, and packaging proteins for secretion, not in the synthesis of proteins.
5. What is the end result of mitosis in animal cells?
- A. The production of two identical daughter cells
- B. The production of four haploid cells
- C. The production of a single diploid cell
- D. The production of a single haploid cell
Correct answer: A
Rationale: Mitosis is a type of cell division specific to eukaryotic cells that results in the production of two identical daughter cells, each with the same genetic material as the parent cell. This process is crucial for growth, tissue repair, and maintaining a constant number of chromosomes in multicellular organisms. During mitosis, the replicated chromosomes are segregated into two separate nuclei, followed by the division of the cell into two identical daughter cells. Options B, C, and D are incorrect as mitosis does not lead to the production of four haploid cells, a single diploid cell, or a single haploid cell. The correct answer is A because mitosis results in the formation of two daughter cells that are genetically identical to each other and to the parent cell, allowing for growth and replacement of damaged cells in multicellular organisms.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access