differentiate between gene therapy and genetic engineering in the context of human intervention
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 science quizlet

1. Differentiate between gene therapy and genetic engineering in the context of human intervention.

Correct answer: B

Rationale: A) Incorrect. Gene therapy does aim to modify existing genes within body cells, but genetic engineering does not necessarily manipulate genes in embryos to be passed on to offspring. Genetic engineering can involve modifying genes in any type of cell, not just embryos. B) Correct. Gene therapy is a medical intervention that aims to treat genetic diseases by correcting or replacing faulty genes within an individual's body cells. On the other hand, genetic engineering involves modifying genes to enhance specific traits or eliminate undesirable ones, often in the context of agriculture or biotechnology. C) Incorrect. While both gene therapy and genetic engineering involve altering DNA sequences, the distinction lies in the target cells. Gene therapy targets somatic cells (non-reproductive cells), while genetic engineering typically involves modifying germline cells (reproductive cells that can pass on genetic changes to offspring). D) Incorrect. There is

2. What controls the involuntary, rhythmic contractions of the heart muscle?

Correct answer: D

Rationale: The correct answer is D: Sinoatrial node (located within the heart). The involuntary, rhythmic contractions of the heart muscle are controlled by a specialized group of cells located within the heart called the sinoatrial node (SA node). The SA node acts as the heart's natural pacemaker, producing electrical impulses that regulate the heart rate and synchronize the contractions of the heart muscle. Choices A, B, and C (Lungs, Brain, Spinal cord) are not responsible for directly influencing the rhythmic contractions of the heart muscle.

3. Why is the simple columnar epithelium lining the small intestine crucial?

Correct answer: C

Rationale: The simple columnar epithelium lining the small intestine is crucial for absorption. This type of epithelium is specialized for absorption due to its tall and closely packed cells, which increase the surface area available for nutrient absorption. The primary function of the small intestine is to absorb nutrients from digested food, and the simple columnar epithelium's structure aids in this process by providing a large surface area for absorption. Choices A, B, and D are incorrect because movement, support, and insulation are not primary functions associated with the simple columnar epithelium in the small intestine. While these functions are essential in other tissues or organs, absorption is the key role of the simple columnar epithelium in the small intestine.

4. What is the molarity of a solution made by dissolving 4.0 grams of NaCl into enough water to make 120 mL of solution? The atomic mass of Na is 23.0 g/mol, and Cl is 35.5 g/mol.

Correct answer: B

Rationale: To find the molarity, first calculate the moles of NaCl. Moles of NaCl = 4.0 g / (23.0 g/mol + 35.5 g/mol) = 0.068 mol. Next, use the formula for molarity: Molarity = moles of solute / liters of solution. Molarity = 0.068 mol / 0.120 L = 0.57 M. Therefore, the molarity of the solution is 0.57 M. Choice A, 0.34 M, is incorrect as it does not match the calculated molarity. Choice C, 0.034 M, is incorrect as it is a decimal point off from the correct molarity. Choice D, 0.057 M, is incorrect as it does not match the calculated molarity of 0.57 M.

5. Which of the following neurotransmitters slows down the activity of neurons to prevent overexcitation?

Correct answer: C

Rationale: The correct answer is C: GABA (gamma-aminobutyric acid). GABA is an inhibitory neurotransmitter that slows down neuronal activity, helping to prevent overexcitation in the brain. It counterbalances the effects of excitatory neurotransmitters like glutamate, playing a crucial role in maintaining the balance of neuronal activity in the brain. Acetylcholine (Choice A) is primarily an excitatory neurotransmitter involved in muscle movement and cognitive functions. Dopamine (Choice B) plays a role in reward-motivated behavior and motor control. Serotonin (Choice D) is involved in regulating mood, appetite, and sleep but is not primarily responsible for slowing down neuronal activity to prevent overexcitation.

Similar Questions

Calcitonin, a hormone that helps regulate calcium levels, is produced by the:
Which of the following areas of the body has the most sweat glands?
What is the molar mass of Ca(NO3)2?
How does urine flow through the urethra?
Which type of muscle tissue contracts involuntarily and is found in organs like the heart and intestines?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses