ATI TEAS 7
TEAS 7 practice test free science
1. Which structure in the heart is responsible for preventing the backflow of blood from the left ventricle into the left atrium?
- A. Aortic valve
- B. Pulmonary valve
- C. Tricuspid valve
- D. Mitral valve
Correct answer: D
Rationale: The mitral valve, also known as the bicuspid valve, is located between the left atrium and the left ventricle of the heart. Its primary function is to prevent the backflow of blood from the left ventricle into the left atrium during ventricular contraction. The aortic valve (A) prevents the backflow of blood from the aorta into the left ventricle, the pulmonary valve (B) prevents the backflow of blood from the pulmonary artery into the right ventricle, and the tricuspid valve (C) prevents the backflow of blood from the right ventricle into the right atrium. Understanding the functions of these heart valves is crucial in maintaining proper blood flow through the heart and preventing regurgitation of blood into the wrong chambers.
2. Parkinson's disease is a neurodegenerative disorder affecting which neurotransmitter?
- A. Dopamine
- B. Acetylcholine
- C. Serotonin
- D. Glutamate
Correct answer: A
Rationale: Parkinson's disease is primarily caused by the loss of dopamine-producing neurons in the brain. Dopamine is a neurotransmitter that plays a crucial role in coordinating movement. The reduction of dopamine levels leads to the characteristic motor symptoms of Parkinson's disease, such as tremors, rigidity, and bradykinesia. Choice B, acetylcholine, is involved in functions like muscle contraction and autonomic nervous system regulation but is not primarily affected in Parkinson's disease. Serotonin (Choice C) is involved in mood regulation and sleep, not the main neurotransmitter affected in Parkinson's disease. Glutamate (Choice D) is the major excitatory neurotransmitter in the central nervous system and is not primarily implicated in Parkinson's disease pathophysiology.
3. How many neutrons and electrons could a negative ion of sulfur have?
- A. 16 neutrons, 16 electrons
- B. 16 neutrons, 17 electrons
- C. 17 neutrons, 16 electrons
- D. 17 neutrons, 17 electrons
Correct answer: B
Rationale: A negative ion of sulfur would have 16 protons and 17 electrons since it gains one electron. The number of neutrons in an ion does not change, so the neutrons would remain at 16. Therefore, the correct answer is 16 neutrons and 17 electrons, which corresponds to choice B. Choice A is incorrect as it does not account for the extra electron gained by the negative ion. Choices C and D are incorrect because they propose a change in the number of neutrons, which is not affected by the ionization process.
4. When a person pushes a box across the floor, which of the following forces is NOT doing work?
- A. The person's pushing force
- B. The normal force from the floor
- C. The gravitational force on the box
- D. The frictional force between the box and the floor
Correct answer: B
Rationale: The normal force from the floor is perpendicular to the direction of motion of the box, so it does not contribute to the work being done. Work is only done by forces acting in the direction of motion of an object. In this case, the normal force is acting at a right angle to the motion, hence it does not perform any work on the box. The person's pushing force, the gravitational force, and the frictional force are all acting in the direction of motion of the box, so they contribute to the work being done in moving the box across the floor.
5. Neurotransmitters send chemical messages across the gap between one neuron and another through which of the following structures?
- A. Schwann cell
- B. ganglion
- C. synapse
- D. axon
Correct answer: C
Rationale: Neurotransmitters send chemical messages across the gap between one neuron and another through a structure called the synapse. The synapse is a specialized junction where the axon of one neuron meets the dendrite or cell body of another neuron. Neurotransmitters are released from the axon terminal of the presynaptic neuron and travel across the synaptic cleft to bind to receptors on the postsynaptic neuron, transmitting the signal between the two neurons. Choice A, Schwann cell, is incorrect as Schwann cells are responsible for producing myelin sheath around axons in the peripheral nervous system, not for transmitting neurotransmitters between neurons. Choice B, ganglion, is incorrect as ganglia are clusters of nerve cell bodies outside the central nervous system and do not directly participate in the transmission of chemical messages between neurons. Choice D, axon, is incorrect as the axon is a long, slender projection of a neuron that conducts electrical impulses away from the cell body and towards the axon terminals, where neurotransmitters are released into the synapse, but it is not the structure across which neurotransmitters travel to communicate between neurons.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access