ATI TEAS 7
TEAS 7 science quizlet
1. Which of the following salt solutions is most likely to conduct electricity well?
- A. A saturated solution
- B. A concentrated solution of a strong electrolyte
- C. A dilute solution of a weak acid
- D. A mixture of a neutral compound and water
Correct answer: B
Rationale: A concentrated solution of a strong electrolyte is most likely to conduct electricity well. Strong electrolytes completely dissociate into ions in solution, allowing for the flow of electric current. This high concentration of ions in the solution enhances its conductivity, making it a better conductor compared to other options. A saturated solution, although containing dissolved ions, may not have a high enough concentration to conduct electricity effectively. A dilute solution of a weak acid is a poor conductor as weak acids only partially dissociate into ions. A mixture of a neutral compound and water does not contain free ions necessary for conducting electricity.
2. What term describes the maximum displacement of particles from their rest position in a wave?
- A. Frequency
- B. Wavelength
- C. Amplitude
- D. Velocity
Correct answer: C
Rationale: The term that describes the maximum displacement of particles from their rest position in a wave is called the amplitude. Amplitude is a measure of the strength or intensity of a wave and is represented by the height of the wave from the rest position to the crest (or trough) of the wave. Frequency (A) refers to the number of complete wavelengths that pass a point in a given time. Wavelength (B) is the distance between two consecutive crests (or troughs) of a wave. Velocity (D) is the speed of the wave, not the maximum displacement of particles from their rest position.
3. Which of the following is the outermost layer of the skin, providing protection against pathogens and the environment?
- A. Dermis
- B. Epidermis
- C. Hypodermis
- D. Stratum corneum (part of the epidermis)
Correct answer: B
Rationale: The epidermis is the correct answer as it is the outermost layer of the skin, providing protection against pathogens and the environment. It consists of multiple layers, including the stratum corneum, which is the outermost layer of the epidermis. The dermis is located beneath the epidermis, offering structural support and housing blood vessels, nerves, and glands. The hypodermis is the deepest layer of the skin, made up of fat and connective tissue that secures the skin to underlying structures. Choice A, Dermis, is incorrect as it is located beneath the epidermis. Choice C, Hypodermis, is incorrect as it is the deepest layer of the skin, not the outermost. Choice D, Stratum corneum (part of the epidermis), is not the correct answer as it is a specific layer within the epidermis and not the overall outermost layer of the skin.
4. Which type of cells make up the myelin sheaths?
- A. Glial cells.
- B. Dendrites.
- C. Melanocytes.
- D. Squamous cells.
Correct answer: A
Rationale: The correct answer is A: Glial cells. Glial cells are responsible for producing the myelin sheaths that surround and insulate nerve cells in the central and peripheral nervous systems. Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system are types of glial cells that form the myelin sheaths. Choice B, dendrites, are not involved in forming myelin sheaths; they are extensions of neurons that receive signals. Choice C, melanocytes, are cells responsible for producing melanin, not myelin. Choice D, squamous cells, are flat epithelial cells found in various tissues but are not involved in myelin sheath formation.
5. What is the primary mode of CO2 transport in the body?
- A. Bicarbonate
- B. Carbamino compounds
- C. None of these
- D. Plasma
Correct answer: A
Rationale: The correct answer is A: Bicarbonate. In the body, the primary mode of CO2 transport is as bicarbonate. Carbon dioxide is converted to bicarbonate in red blood cells as part of the bicarbonate buffer system, which helps maintain the pH balance in the blood. Bicarbonate is then transported in the plasma to the lungs where it is converted back to carbon dioxide for exhalation. While carbamino compounds also play a role in CO2 transport by binding to amino groups on proteins, bicarbonate is the main mode of transport for carbon dioxide in the body. Options B, C, and D are incorrect as they do not represent the primary mechanism of CO2 transport in the body.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access