within a nuclear reactor control rods serve the primary purpose of
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 science study guide free

1. What is the primary purpose of control rods within a nuclear reactor?

Correct answer: B

Rationale: The primary purpose of control rods in a nuclear reactor is to absorb excess neutrons to control criticality. When inserted into the reactor core, control rods absorb neutrons, reducing the number available for sustaining the fission chain reaction. This action allows operators to manage the reactor power levels and prevent overheating or runaway reactions. Reflecting neutrons back into the core and moderating neutron velocity are not the primary functions of control rods in a nuclear reactor. Choice A is incorrect because control rods do not reflect neutrons back into the core but absorb them. Choice C is incorrect as the moderation of neutron velocity is typically achieved by other materials like a moderator (e.g., water, graphite) rather than control rods. Choice D is incorrect as control rods do not reflect neutrons or moderate neutron velocity, making it an incorrect option.

2. What protein complex controls the progression of mitosis through its activation and degradation?

Correct answer: B

Rationale: A) Ribosome: Ribosomes are cellular organelles responsible for protein synthesis and are not directly involved in controlling the progression of mitosis. B) Cyclin-dependent kinase (CDK): CDKs are a family of protein kinases that regulate the cell cycle, including the progression of mitosis. CDK activity is controlled by cyclins, which bind to CDKs to activate them at specific points in the cell cycle. The activation and degradation of cyclins regulate the activity of CDKs, which in turn control the progression of mitosis. C) Centriole: Centrioles are involved in organizing the microtubules of the mitotic spindle but do not directly control the progression of mitosis. D) Microtubule: Microtubules are structural components of the cytoskeleton and are involved in various cellular processes, including mitosis, but they do not control

3. Which of the following is an example of a decomposition reaction?

Correct answer: B

Rationale: A decomposition reaction involves a single compound breaking down into two or more simpler substances. In option B, CaCO3 breaks down into CaO and CO2, making it an example of a decomposition reaction. Options A, C, and D involve different types of chemical reactions such as synthesis, combination, and combustion, respectively. Option A represents a synthesis reaction, where two elements combine to form a compound. Option C demonstrates a combination reaction, where two elements combine to form a compound. Option D is an example of a synthesis reaction, where two reactants combine to form a single compound. It is important to recognize the specific characteristics of each type of chemical reaction to identify the correct example of decomposition reaction, where a compound breaks down into simpler products.

4. What are the components of an ECG?

Correct answer: B

Rationale: The correct answer is B: P wave, QRS complex, T wave. The components of an ECG include the P wave (atrial depolarization), QRS complex (ventricular depolarization), and T wave (ventricular repolarization). The P wave represents atrial depolarization, the QRS complex represents ventricular depolarization, and the T wave represents ventricular repolarization. Options A, C, and D have incorrect combinations of ECG components. Option A incorrectly includes the U wave, which is not a standard component of a typical ECG. Option C includes the S wave, which is not a primary component of a standard ECG. Option D includes the U wave, which is not a standard component, and the S wave, which is not a primary component of an ECG. Therefore, option B is the most accurate combination of components for an ECG.

5. Which concentration unit depends on pressure?

Correct answer: C

Rationale: The correct answer is 'C: molarity.' Molarity is the concentration unit that depends on pressure. In molarity, the concentration of a solution is expressed as the number of moles of solute per liter of solution. This means that changes in pressure can affect the volume of the solution and consequently the concentration. Choices A and B, ppm (parts per million) and ppb (parts per billion), respectively, are independent of pressure variations as they are based on mass ratios. Therefore, molarity is the only concentration unit listed that is directly influenced by changes in pressure.

Similar Questions

What is the term for a group of organisms that can interbreed and produce fertile offspring?
According to Newton's third law of motion, for every action, there is an equal and opposite _________.
Which of the following is NOT a state of matter?
Which brain structure is responsible for processing visual information?
What is the name for the change in enthalpy (heat) associated with a chemical reaction at constant pressure?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses