the neutral theory of molecular evolution proposes that
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 science study guide free

1. The neutral theory of molecular evolution proposes that:

Correct answer: A

Rationale: Rationale: A) The neutral theory of molecular evolution, proposed by Motoo Kimura in the 1960s, suggests that the majority of mutations that occur in DNA are selectively neutral, meaning they do not have a significant impact on an organism's fitness. These neutral mutations are not subject to natural selection and are allowed to accumulate in populations over time. This theory helps explain the high levels of genetic variation observed within populations. B) Option B is incorrect because not all mutations are beneficial. Mutations can be neutral, harmful, or beneficial, and the neutral theory specifically focuses on the idea that many mutations are neutral in their effects. C) Option C is incorrect because the neutral theory suggests that evolution is not primarily driven by strong directional selection pressures. Instead, it emphasizes the role of genetic drift and the accumulation of neutral mutations in shaping genetic variation. D) Option D is incorrect because

2. What is the momentum of a car with a mass of 1500 kg moving at a speed of 20 m/s?

Correct answer: A

Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. In this case, the momentum of the car can be determined using the formula momentum = mass x velocity. Substituting the given values, momentum = 1500 kg x 20 m/s = 30,000 kg m/s. Therefore, the correct answer is A, 30,000 kg m/s. Choice B (1500 kg m/s) is incorrect because that value represents the mass of the car, not its momentum. Choice C (20 kg m/s) is incorrect as it only represents the speed of the car, not its momentum. Choice D (Momentum cannot be determined without knowing the direction of motion) is incorrect because momentum is a vector quantity and can be determined using magnitude and direction, but in this case, only the magnitude is required.

3. What type of intermolecular force is responsible for the high surface tension of water?

Correct answer: A

Rationale: The high surface tension of water is primarily due to the strong hydrogen bonding between water molecules. Hydrogen bonding is a specific type of intermolecular force that occurs between a hydrogen atom covalently bonded to a highly electronegative atom, like oxygen in water, and another electronegative atom nearby. This unique interaction results in a strong attraction between water molecules at the surface, leading to the cohesive forces responsible for the high surface tension of water. Choices B, C, and D are incorrect because London dispersion forces, ionic bonding, and metallic bonding do not account for the high surface tension observed in water. London dispersion forces are relatively weaker intermolecular forces, while ionic and metallic bonding are types of intramolecular forces that do not directly contribute to the surface tension of water.

4. Which type of energy is associated with the random motion of particles in a substance?

Correct answer: C

Rationale: Thermal energy is the correct answer as it is associated with the random motion of particles in a substance. When particles move randomly, they generate heat energy, which is a form of thermal energy. Potential energy is stored energy that can be converted into other forms when released, such as kinetic energy. Mechanical energy is the sum of potential and kinetic energy in an object, which is not directly related to the random motion of particles. Chemical energy is energy stored in the bonds of chemical compounds and is not specifically related to the motion of particles.

5. How many amino acids can make up a protein?

Correct answer: A

Rationale: Proteins are made up of long chains of amino acids, and there are 20 standard amino acids commonly found in proteins. The sequence and arrangement of these amino acids determine the structure and function of a protein. While proteins can vary in size and complexity, the number of amino acids typically ranges from around 10 to 20 in smaller proteins to hundreds or even thousands in larger proteins. Therefore, the range of 10-20 amino acids is the most accurate representation of the number of amino acids that can make up a protein. Choices B, C, and D are incorrect as they provide ranges that are beyond the typical number of amino acids found in proteins and may lead to confusion. The correct answer is A (10-20).

Similar Questions

What is the term for the process of converting a liquid into a gas at a temperature below its boiling point?
What is the independent variable in the botanist's experiment?
What is the breakdown product of creatine phosphate, an energy source used for short bursts of muscle activity?
When ice melts, it undergoes a...
Examine the following decomposition reaction: ABC → ______. Which of the following is a possible set of products for this reaction?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses