ATI TEAS 7
TEAS 7 science study guide free
1. Which term describes the resistance of a substance to being hammered into different shapes?
- A. Viscosity
- B. Ductility
- C. Malleability
- D. Conductivity
Correct answer: C
Rationale: Malleability is the property that allows a substance to be hammered or rolled into thin sheets without breaking. It is the opposite of brittleness. Ductility refers to the ability of a material to be drawn into thin wires, not hammered into shapes. Viscosity is the measure of a fluid's resistance to flow, indicating how thick or sticky it is, not related to shaping by hammering. Conductivity refers to the ability of a material to conduct electricity or heat, not resistance to being hammered into different shapes.
2. Which of the following organs does not belong with the others?
- A. Thyroid gland
- B. Stomach
- C. Intestines
- D. Pancreas
Correct answer: B
Rationale: The correct answer is B - Stomach. The stomach is primarily involved in the digestive system, breaking down food through digestion. In contrast, the thyroid gland, intestines, and pancreas are part of the endocrine system or digestive system, involved in hormone production, nutrient absorption, and digestion. Therefore, the stomach stands out as the odd one in this group as it is the only organ specifically dedicated to digestion, while the others have dual roles or different primary functions.
3. What are the components of the male external genitalia and their functions?
- A. Prostate gland: produces seminal fluid
- B. Scrotum: protects and maintains the temperature of the testes
- C. Penis: delivers sperm to female reproductive tract
- D. Urethra: conducts urine out of the body
Correct answer: C
Rationale: The correct answer is C. The penis is responsible for delivering sperm to the female reproductive tract during sexual intercourse. The scrotum is not involved in producing sperm but rather protects and regulates the temperature of the testes, which is essential for sperm production. The prostate gland is involved in producing seminal fluid, not sperm. The urethra serves the purpose of conducting urine out of the body and also acts as a passage for semen during ejaculation.
4. How do spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints?
- A. Misaligned chromosomes fail to attach to microtubules, triggering a delay in anaphase onset.
- B. The presence of unattached kinetochores on the centromeres sends a signal to pause cell cycle progression.
- C. Microtubule instability and rapid depolymerization lead to the activation of checkpoint proteins.
- D. All of the above.
Correct answer: D
Rationale: A) Misaligned chromosomes fail to attach to microtubules, triggering a delay in anaphase onset: Proper attachment of chromosomes to spindle fibers is essential for accurate segregation of genetic material during cell division. Misaligned chromosomes that fail to attach to microtubules can lead to delays in anaphase onset, allowing the cell to correct errors before proceeding with division. B) The presence of unattached kinetochores on the centromeres sends a signal to pause cell cycle progression: Kinetochores at the centromeres help attach chromosomes to spindle fibers. When kinetochores are unattached or improperly attached to microtubules, they signal the cell to pause cell cycle progression, ensuring proper chromosome alignment before division. C) Microtubule instability and rapid depolymerization lead to the activation of checkpoint proteins: While microtubule dynamics are crucial for cell division, microtubule instability and rapid depolymerization can disrupt chromosome attachment. However, this mechanism is not directly related to the activation of cell cycle checkpoint proteins, making this statement incorrect. Therefore, choices A and B accurately describe how spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints, making option D the correct answer.
5. What is the importance of RNA splicing?
- A. Removes introns from the mRNA molecule
- B. Adds the poly-A tail to the mRNA molecule
- C. Activates the mRNA molecule for translation
- D. Modifies the structure of the protein
Correct answer: A
Rationale: RNA splicing is a crucial process in gene expression where non-coding regions called introns are removed from the pre-mRNA molecule, and the remaining coding regions called exons are joined together to form the mature mRNA molecule. This process ensures that only the protein-coding sequences are retained in the mRNA for translation, allowing for the production of functional proteins. Therefore, option A is the correct answer as it accurately describes the importance of RNA splicing in generating mature mRNA molecules for protein synthesis. B) Adding the poly-A tail to the mRNA molecule is a post-transcriptional modification that occurs after RNA splicing and is not directly related to the process of removing introns. C) Activating the mRNA molecule for translation is typically achieved through the addition of a 5' cap and the poly-A tail, rather than through RNA splicing. D) Modifying the structure of the protein is not directly related to the process of RNA splicing, which primarily focuses on mRNA maturation by removing non-coding introns.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access