ATI TEAS 7
TEAS version 7 quizlet science
1. Which property of a substance refers to its ability to be stretched into thin wires without breaking?
- A. Conductivity
- B. Viscosity
- C. Ductility
- D. Malleability
Correct answer: C
Rationale: Ductility is the property of a substance that allows it to be stretched into thin wires without breaking. This property is distinct from the other options provided. Conductivity refers to the ability to conduct electricity or heat, viscosity refers to a liquid's resistance to flow, and malleability refers to the ability of a substance to be hammered or rolled into thin sheets. Therefore, the correct answer is 'Ductility.'
2. The term 'symbiotic relationship' describes an interaction between two organisms where:
- A. One organism benefits and the other is unaffected
- B. Both organisms are harmed by the interaction
- C. One organism benefits and the other is negatively impacted
- D. Both organisms benefit from the interaction
Correct answer: D
Rationale: In a symbiotic relationship, both organisms involved benefit from the interaction. This mutually beneficial relationship can take different forms, such as mutualism where both organisms benefit, commensalism where one organism benefits and the other is unaffected, or parasitism where one organism benefits at the expense of the other. In this case, the term 'symbiotic relationship' specifically refers to a scenario where both organisms derive some form of benefit from their interaction. Choices A, B, and C are incorrect because they do not accurately describe a symbiotic relationship. In symbiosis, both organisms benefit, making option D the correct choice.
3. During gas exchange in the alveoli, what happens to oxygen?
- A. Oxygen is released from the alveoli into the bloodstream.
- B. Oxygen is absorbed from the alveoli into the bloodstream.
- C. Oxygen is converted into carbon dioxide.
- D. Oxygen is stored in the alveoli for later use.
Correct answer: B
Rationale: During gas exchange in the alveoli, oxygen is absorbed from the alveoli into the bloodstream. This process occurs due to the difference in partial pressures of oxygen between the alveoli and the bloodstream, causing oxygen to move from an area of higher concentration (alveoli) to an area of lower concentration (bloodstream). Oxygen is then transported by red blood cells to tissues throughout the body for cellular respiration. Choice A is incorrect as oxygen moves from the alveoli into the bloodstream, not the other way around. Choice C is incorrect as oxygen is not converted into carbon dioxide during gas exchange. Choice D is incorrect as oxygen is not stored in the alveoli but rather continuously exchanged with carbon dioxide during respiration.
4. What is the momentum of a car with a mass of 1500 kg moving at a speed of 20 m/s?
- A. 30,000 kg m/s
- B. 1500 kg m/s
- C. 20 kg m/s
- D. Momentum cannot be determined without knowing the direction of motion.
Correct answer: A
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. In this case, the momentum of the car can be determined using the formula momentum = mass x velocity. Substituting the given values, momentum = 1500 kg x 20 m/s = 30,000 kg m/s. Therefore, the correct answer is A, 30,000 kg m/s. Choice B (1500 kg m/s) is incorrect because that value represents the mass of the car, not its momentum. Choice C (20 kg m/s) is incorrect as it only represents the speed of the car, not its momentum. Choice D (Momentum cannot be determined without knowing the direction of motion) is incorrect because momentum is a vector quantity and can be determined using magnitude and direction, but in this case, only the magnitude is required.
5. Which level of protein structure is defined by the folds and coils of the protein's polypeptide backbone?
- A. Primary
- B. Secondary
- C. Tertiary
- D. Quaternary
Correct answer: B
Rationale: The correct answer is B: Secondary. The secondary structure of a protein is defined by the folding and coiling of the polypeptide backbone into structures like alpha helices and beta sheets. Secondary structure primarily involves interactions such as hydrogen bonding within the backbone. This level of protein structure is distinct from primary structure (A) which refers to the linear sequence of amino acids, tertiary structure (C) which involves the overall 3D arrangement of a single polypeptide chain, and quaternary structure (D) which pertains to the interaction between multiple polypeptide chains in a protein complex.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access