ATI TEAS 7
TEAS 7 science practice
1. What is the significance of a healthy gut microbiome?
- A. Production of digestive enzymes
- B. Boosting the immune system and nutrient synthesis
- C. Breakdown of complex carbohydrates
- D. Regulation of appetite
Correct answer: B
Rationale: A healthy gut microbiome plays a crucial role in boosting the immune system by defending against harmful pathogens, synthesizing essential nutrients like vitamins, aiding in the digestion of certain foods, and maintaining overall gut health. While the gut microbiome does contribute to the breakdown of complex carbohydrates and regulation of appetite, its significance extends beyond these functions to include immune support and nutrient synthesis. Choice A, production of digestive enzymes, is not the primary significance of a healthy gut microbiome. Choice C is a function related to the gut microbiome but is not the sole significance. Choice D, regulation of appetite, is important but not as central as the immune system support and nutrient synthesis provided by a healthy gut microbiome.
2. Which type of immune cell does the human immunodeficiency virus (HIV) target and destroy?
- A. Neutrophils
- B. Macrophages
- C. Helper T cells
- D. Memory B cells
Correct answer: C
Rationale: HIV targets and destroys Helper T cells, which are vital for coordinating the immune response against infections. The destruction of Helper T cells weakens the immune system, leading to acquired immunodeficiency syndrome (AIDS). Neutrophils (Choice A) are primarily involved in acute inflammatory responses and fighting bacterial infections. Macrophages (Choice B) play a role in phagocytosis and antigen presentation but are not the primary target of HIV. Memory B cells (Choice D) are responsible for mounting a quicker and more robust antibody response upon re-exposure to a pathogen, but they are not the main target of HIV infection.
3. During photosynthesis, plants capture sunlight and convert water and carbon dioxide into glucose and oxygen. This is an example of a:
- A. Decomposition reaction
- B. Combustion reaction
- C. Synthesis reaction
- D. Double displacement reaction
Correct answer: C
Rationale: This is an example of a synthesis reaction because simpler substances (water and carbon dioxide) are combined to form a more complex substance (glucose) in the presence of sunlight. Choice A (Decomposition reaction) involves breaking down a compound into simpler substances, which is the opposite of what happens in photosynthesis. Choice B (Combustion reaction) typically involves a substance reacting with oxygen to produce heat and light, not the formation of glucose and oxygen from simpler substances. Choice D (Double displacement reaction) involves an exchange of ions between two compounds, which is not what occurs in photosynthesis.
4. Which of the following factors would increase the solubility of a gas in a liquid?
- A. Decreasing temperature
- B. Increasing pressure
- C. Decreasing surface area
- D. Increasing particle size
Correct answer: B
Rationale: The correct answer is increasing pressure. According to Henry's Law, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas above the liquid. Therefore, increasing pressure would force more gas molecules into the liquid, leading to an increase in solubility. Conversely, decreasing temperature, decreasing surface area, and increasing particle size would not directly impact the solubility of a gas in a liquid. Decreasing temperature typically decreases solubility as gases are less soluble at lower temperatures. Decreasing surface area and increasing particle size are related to surface area and not the pressure above the liquid, thus not affecting solubility as pressure does.
5. What is a submicroscopic entity that is considered nonliving because it lacks cellular structure and consists of nucleic acids encapsulated in a protein coat called a capsid?
- A. Bacteria
- B. Fungus
- C. Virus
- D. Protozoa
Correct answer: C
Rationale: The correct answer is C: Virus. Viruses are not considered living organisms because they lack cellular structure. Instead, they are composed of nucleic acids (either DNA or RNA) enclosed in a protein coat called a capsid. Bacteria (choice A), fungus (choice B), and protozoa (choice D) are all living organisms with cellular structures, unlike viruses. Therefore, they are incorrect choices for this question.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access