ATI TEAS 7
TEAS 7 Science Practice Test
1. Which of the following sets of valves is primarily responsible for preventing blood flow from major blood vessels to the heart?
- A. atrioventricular valves
- B. semilunar valves
- C. tricuspid valves
- D. bicuspid valves
Correct answer: B
Rationale: The correct answer is B: semilunar valves. Semilunar valves are primarily responsible for preventing blood flow from major blood vessels to the heart. These valves are located at the base of the aorta and the pulmonary artery, ensuring blood flows in one direction only by closing when the ventricles relax to prevent blood from flowing back into the heart. Choices A, C, and D are incorrect. Atrioventricular valves (choice A) include the tricuspid and bicuspid valves, which prevent backflow between the atria and ventricles, not major blood vessels. Tricuspid valves (choice C) and bicuspid valves (choice D) are specific types of atrioventricular valves located between the atria and ventricles, not at the base of major blood vessels.
2. What is the term for a solution that contains less solute than the maximum amount it could dissolve at a specific temperature and pressure?
- A. Saturated solution
- B. Unsaturated solution
- C. Supersaturated solution
- D. Concentrated solution
Correct answer: B
Rationale: An unsaturated solution is a solution that contains less solute than the maximum amount it could dissolve at a specific temperature and pressure. In an unsaturated solution, more solute can still be added and dissolved in the solvent. Choice A, a saturated solution, refers to a solution in which the maximum amount of solute has been dissolved at a specific temperature and pressure, leading to equilibrium. Choice C, a supersaturated solution, contains more solute than it can normally hold at a specific temperature and pressure, achieved through special conditions followed by rapid cooling or evaporation. Choice D, a concentrated solution, refers to a solution with a high amount of solute compared to the amount of solvent, regardless of reaching the saturation point.
3. Which of the following functional groups is present in carboxylic acids?
- A. Carbonyl
- B. Hydroxyl
- C. Carboxyl
- D. Aldehyde
Correct answer: C
Rationale: Carboxylic acids contain the carboxyl functional group, which consists of a carbonyl group (C=O) and a hydroxyl group (-OH) attached to the same carbon atom. The carboxyl group is represented as -COOH in the molecular structure of carboxylic acids. Therefore, the correct functional group present in carboxylic acids is the carboxyl group, making option C the correct choice. Option A, 'Carbonyl,' is incorrect as it only refers to the C=O group without the -OH component present in carboxylic acids. Option B, 'Hydroxyl,' is incorrect as it only represents the -OH group without the carbonyl group. Option D, 'Aldehyde,' is incorrect as it refers to a different functional group with a carbonyl group attached to a hydrogen atom, not the carboxyl group found in carboxylic acids.
4. Which of the following is an example of a commensal relationship between a microorganism and a human?
- A. Salmonella causing food poisoning
- B. taphylococcus aureus causing skin infections
- C. coli living in the gut
- D. Rabies virus causing neurological disease
Correct answer: C
Rationale: A commensal relationship is a type of symbiotic relationship in which one organism benefits, while the other is neither harmed nor benefited. In this case, E. coli living in the gut is an example of a commensal relationship because it can benefit from the environment in the gut without causing harm to the human host. Option A, Salmonella causing food poisoning, is an example of a pathogenic relationship where the microorganism causes harm to the host. Option B, Staphylococcus aureus causing skin infections, is also an example of a pathogenic relationship where the microorganism causes harm to the host. Option D, Rabies virus causing neurological disease, is another example of a pathogenic relationship where the microorganism causes harm to the host.
5. When a car brakes to a stop, friction between the tires and the road acts as:
- A. A balanced force
- B. An unbalanced force causing deceleration
- C. An unbalanced force causing the car to remain at rest
- D. No force at all
Correct answer: B
Rationale: When a car brakes to a stop, friction between the tires and the road acts as an unbalanced force causing deceleration. This friction force opposes the motion of the car, resulting in a decrease in speed until the car comes to a complete stop. Choice A is incorrect because if the forces were balanced, the car would not experience any deceleration. Choice C is incorrect because if the force were unbalanced in the direction of motion, the car would continue to move instead of coming to a stop. Choice D is incorrect because friction between the tires and the road does exert a force, causing deceleration.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access