ATI TEAS 7
ATI TEAS Science Practice Test
1. Which of the following is directly transcribed from DNA and represents the first step in protein synthesis?
- A. siRNA
- B. rRNA
- C. mRNA
- D. tRNA
Correct answer: C
Rationale: mRNA (messenger RNA) is directly transcribed from DNA in the nucleus during the process of transcription. It serves as a template for protein synthesis during translation in the cytoplasm. mRNA carries genetic information from the DNA to the ribosomes, where it determines the sequence of amino acids in a protein. Thus, mRNA represents the first step in protein synthesis as it carries the code from the DNA to be translated into a protein. Choice A, siRNA (small interfering RNA), is involved in post-transcriptional gene silencing and does not play a role in protein synthesis. Choice B, rRNA (ribosomal RNA), is a component of the ribosome and plays a structural and functional role in protein synthesis but is not directly transcribed from DNA. Choice D, tRNA (transfer RNA), is responsible for bringing amino acids to the ribosome during protein synthesis but is not directly transcribed from DNA.
2. Which organ produces insulin, a hormone responsible for regulating blood sugar levels?
- A. Parathyroid gland
- B. Pancreas
- C. Thymus gland
- D. Ovaries
Correct answer: B
Rationale: Insulin is a hormone produced by the pancreas. Beta cells located in the islets of Langerhans within the pancreas are responsible for insulin production. Insulin plays a crucial role in regulating blood sugar levels by promoting the uptake of glucose into cells, thereby maintaining blood sugar levels within a normal range. Choices A, C, and D are incorrect because the parathyroid gland is primarily involved in regulating calcium levels, the thymus gland is involved in immune function, and the ovaries are involved in reproductive functions, not insulin production for blood sugar regulation.
3. What describes a cell’s reaction to being placed in a hypertonic solution?
- A. The cell will shrink as water is pulled out of the cell to equalize the concentrations inside and outside of the cell.
- B. The cell will swell as water is pulled into the cell to equalize the concentrations inside and outside of the cell.
- C. The cell will remain the same size since the concentrations inside and outside the cell are equal to begin with.
- D. The pH inside the cell will drop in order to equalize the pH inside and outside the cell.
Correct answer: A
Rationale: A cell placed in a hypertonic solution has a higher solute concentration outside the cell compared to inside. This creates a concentration gradient that causes water to move out of the cell through osmosis to equalize the concentrations on both sides. As a result, the cell will shrink or undergo plasmolysis, as water is pulled out of the cell. Choice B is incorrect because a hypertonic solution causes water to move out of the cell, leading to shrinkage rather than swelling. Choice C is incorrect as a hypertonic solution results in a concentration gradient that leads to water leaving the cell, causing it to shrink. Choice D is incorrect because pH is not directly affected by being placed in a hypertonic solution; the change in solute concentration primarily impacts water movement.
4. What is the neural pathway that triggers a reflex action?
- A. Reflex loop
- B. Reflex arc
- C. Neural pathway
- D. Reflex reaction
Correct answer: B
Rationale: The correct answer is 'B: Reflex arc.' A reflex arc is the neural pathway that triggers an automatic, involuntary reflex action in response to a stimulus. It involves sensory neurons, interneurons in the spinal cord, and motor neurons, allowing for a rapid response without conscious thought. Choice A, 'Reflex loop,' is incorrect as the term commonly used is 'Reflex arc' to describe this neural pathway. Choice C, 'Neural pathway,' is too general and does not specifically refer to the pathway involved in reflex actions. Choice D, 'Reflex reaction,' is not the commonly accepted term to describe the neural pathway that triggers reflex actions.
5. In a closed system with a gas at constant volume, what will happen to the temperature if the pressure is increased?
- A. The temperature will stay the same
- B. The temperature will decrease
- C. The temperature will increase
- D. It cannot be determined with the information given
Correct answer: C
Rationale: In a closed system with a gas at constant volume, according to Gay-Lussac's law, the temperature of a gas is directly proportional to its pressure. When the pressure is increased, the temperature of the gas will also increase. This relationship is a direct consequence of the ideal gas law, where pressure and temperature are directly proportional when volume is held constant. Therefore, as pressure increases in a closed system with constant volume, the temperature of the gas will increase. Choices A, B, and D are incorrect. The temperature will not stay the same (Choice A) or decrease (Choice B) when the pressure is increased in this scenario. The relationship between pressure and temperature in a closed system with constant volume allows for a definitive conclusion about the increase in temperature when pressure is increased, making Choice D, which suggests inability to determine, incorrect.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access