ATI TEAS 7
ATI TEAS Science
1. Which level of protein structure is defined by the folds and coils of the protein's polypeptide backbone?
- A. Primary
- B. Secondary
- C. Tertiary
- D. Quaternary
Correct answer: B
Rationale: The correct answer is B: Secondary. The secondary structure of a protein is defined by the folds and coils of the protein's polypeptide backbone. This level of structure is characterized by the formation of alpha helices and beta sheets, which are stabilized by hydrogen bonds between amino acids along the polypeptide chain. Choice A, Primary, refers to the linear sequence of amino acids in the protein. Choice C, Tertiary, involves the 3D folding of the entire polypeptide chain. Choice D, Quaternary, pertains to the arrangement of multiple polypeptide subunits in a protein complex.
2. What is the common name for the organic compound CH₃OH?
- A. Methane
- B. Ethanol
- C. Methanol
- D. Butanol
Correct answer: C
Rationale: The common name for the organic compound CH₃OH is methanol. Methane (A) has the chemical formula CH₄. Ethanol (B) corresponds to the formula C₂H₅OH. Butanol (D) is a compound with the formula C₄H₉OH. The correct answer is C - Methanol, which is the common name for CH₃OH, while the other options correspond to different organic compounds with distinct formulas. Therefore, methanol is the correct choice when identifying the common name for the compound CH₃OH.
3. Where does the nerve impulses send neurotransmitters across a synapse to a muscle cell to stimulate muscle contraction?
- A. sarcomere
- B. tendon
- C. myelin sheath
- D. neuromuscular junction
Correct answer: D
Rationale: The neuromuscular junction is the specific area where nerve impulses trigger the release of neurotransmitters that cross the synaptic gap to bind to receptors on the muscle cell membrane. This binding initiates muscle contraction by stimulating the muscle cell. The sarcomere is the basic contractile unit in a muscle fiber, not the location where nerve impulses communicate with muscle cells. Tendons are connective tissues that attach muscles to bones and are not involved in transmitting nerve impulses. The myelin sheath is a protective covering around nerve fibers but is not directly involved in transmitting neurotransmitters to muscle cells for muscle contraction.
4. What is the role of RNA in protein synthesis?
- A. Stores genetic information
- B. Decodes genetic information
- C. Provides energy for the process
- D. Transports amino acids to the ribosomes
Correct answer: B
Rationale: RNA plays a crucial role in protein synthesis by decoding the genetic information stored in DNA and carrying it to the ribosomes where proteins are synthesized. This process involves transcription, where RNA is synthesized from DNA, and translation, where the information in RNA is used to assemble amino acids into proteins. RNA acts as a messenger between DNA and the ribosomes, ensuring that the correct sequence of amino acids is used to build proteins according to the genetic code. Option A is incorrect because DNA, not RNA, stores genetic information. Option C is incorrect because RNA does not provide energy for protein synthesis; energy is usually provided by ATP molecules. Option D is incorrect because tRNA (transfer RNA) is responsible for transporting amino acids to the ribosomes, not RNA in general. Therefore, option B is the most appropriate choice as it accurately describes the role of RNA in protein synthesis.
5. Which type of isomerism arises due to differences in the arrangement of atoms around a double bond?
- A. Chain isomerism
- B. Functional group isomerism
- C. Cis-trans isomerism
- D. Stereoisomerism
Correct answer: C
Rationale: Cis-trans isomerism, also known as geometric isomerism, arises due to differences in the arrangement of atoms around a double bond. In cis isomers, similar groups are on the same side of the double bond, while in trans isomers, similar groups are on opposite sides of the double bond. This type of isomerism is a subset of stereoisomerism, which includes all isomers that have the same connectivity but differ in spatial arrangement. Chain isomerism involves differences in the carbon chain arrangement, functional group isomerism involves different functional groups, and stereoisomerism is a broader category that encompasses isomers with the same connectivity but different spatial arrangement.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access