what type of bone is the kneecap patella
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS 7 science review

1. What type of bone is the kneecap (patella)?

Correct answer: C

Rationale: The correct answer is C: Flat bone. The kneecap (patella) is classified as a flat bone. Flat bones are thin, flattened bones that provide protection and offer a broad surface for muscle attachment. The patella fits this description as it is a flat, triangular bone located in front of the knee joint, protecting the knee and providing attachment points for muscles like the quadriceps. Choice A, long bone, is incorrect as long bones are typically found in the arms and legs, not in the knee area. Choice B, short bone, is incorrect as short bones are cube-shaped and are not characteristic of the patella. Choice D, irregular bone, is incorrect as irregular bones have complex shapes and do not apply to the flat, triangular structure of the patella.

2. Which of the following is NOT an example of an intermolecular force?

Correct answer: C

Rationale: Ionic bonding is not considered an intermolecular force but an intramolecular force. Intermolecular forces occur between different molecules, while intramolecular forces act within a molecule. Hydrogen bonding, dipole-dipole interactions, and London dispersion forces are intermolecular forces. Hydrogen bonding involves a hydrogen atom bonded to a highly electronegative atom, dipole-dipole interactions occur between polar molecules, and London dispersion forces are temporary attractions between nonpolar molecules.

3. During antibiotic use, bacteria can evolve resistance. This is an example of:

Correct answer: D

Rationale: The process of bacteria evolving resistance to antibiotics due to the selective pressure exerted by the antibiotics is an example of artificial selection (human intervention selecting for certain traits) acting on a natural process (bacterial evolution). Antibiotic use creates a selective pressure that favors the survival and reproduction of bacteria with resistance traits, leading to the evolution of antibiotic-resistant strains. - Coevolution (option A) refers to the influence of two species on each other's evolution, which is not the case in the scenario described in the question. - Convergent evolution (option B) involves unrelated organisms evolving similar traits due to similar environmental pressures, which is not directly applicable to the situation of bacteria evolving resistance to antibiotics. - Macroevolution (option C) refers to large-scale evolutionary changes over long periods, which is not specifically demonstrated in the context of bacteria evolving resistance during antibiotic use.

4. Positron emission tomography (PET) scans utilize a key property of positrons for medical imaging. What is this property?

Correct answer: B

Rationale: Positron emission tomography (PET) scans utilize the property of positrons having a positive charge. Positrons are the antimatter counterpart of electrons, having the same mass but opposite charge. When a positron collides with an electron, they annihilate each other, producing gamma rays that can be detected by the PET scanner to create images of the body's internal structures and functions. Choice A is incorrect because positrons have the same mass as electrons. Choice C is incorrect as positrons are not extremely stable due to their tendency to annihilate when they encounter electrons. Choice D is incorrect as positrons exhibit different behavior than electrons due to their opposite charges.

5. If you compare a 1 M solution of NaCl to a 1 M solution of glucose (C6H12O6) in water, which solution would have the higher boiling point?

Correct answer: A

Rationale: 1. Boiling point elevation: When a solute is added to a solvent, it raises the boiling point of the solution compared to the pure solvent. This phenomenon is known as boiling point elevation. 2. Van't Hoff factor: The extent of boiling point elevation depends on the number of particles the solute dissociates into in the solution. NaCl dissociates into two ions (Na+ and Cl-) in water, while glucose does not dissociate into ions. Therefore, NaCl has a higher Van't Hoff factor than glucose. 3. Colligative properties: Boiling point elevation is a colligative property, meaning it depends on the concentration of the solute particles, not the identity of the solute. Since both NaCl and glucose are 1 M solutions, the NaCl solution will have a higher boiling point due to its higher Van't Hoff factor. 4. Conclusion: The NaCl solution

Similar Questions

DNA has both a 'sense' and 'antisense' strand. What is true about the antisense strand?
Which digestive enzyme is primarily responsible for breaking down proteins?
When is work done by a force on an object?
What is the process of transporting molecules across the cell membrane against a concentration gradient called?
A collection of organs working together to perform a specific physiological function is known as a(n):

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses