ATI TEAS 7
Mometrix TEAS 7 science practice test
1. Which type of bond involves the complete transfer of electrons between atoms?
- A. Covalent bond
- B. Ionic bond
- C. Metallic bond
- D. Hydrogen bond
Correct answer: B
Rationale: The correct answer is B, Ionic bond. Ionic bond involves the complete transfer of electrons from one atom to another, resulting in the formation of cations and anions. This transfer leads to the creation of strong electrostatic attraction between the oppositely charged ions. Covalent bonds, on the other hand, involve the sharing of electrons between atoms to achieve stability. Metallic bonds are formed in metals, where a sea of delocalized electrons surrounds positively charged metal ions, contributing to the metal's properties. Hydrogen bonds are intermolecular forces that occur between a hydrogen atom and a highly electronegative atom like oxygen or nitrogen, not involving the complete transfer of electrons.
2. Which skin condition is characterized by red, itchy, and inflamed patches?
- A. Eczema
- B. Psoriasis
- C. Melanoma
- D. Keloid
Correct answer: A
Rationale: Eczema is a skin condition characterized by red, itchy, and inflamed patches. It is a common condition that can vary in severity and often presents with symptoms such as dry, scaly skin, and sometimes oozing or crusting. Psoriasis, on the other hand, presents with red, scaly patches but is not typically described as itchy. Melanoma is a type of skin cancer characterized by the development of abnormal moles, while keloid is a type of raised scar that can occur after an injury to the skin. Therefore, the correct answer is eczema due to its specific symptom presentation of red, itchy, and inflamed patches.
3. Which of the following joints allows for side-to-side bending movements?
- A. Hinge joint
- B. Ball-and-socket joint
- C. Gliding joint
- D. Saddle joint
Correct answer: C
Rationale: The correct answer is C, Gliding joint. Gliding joints allow for side-to-side bending movements. These joints are found between the small bones of the wrist and ankle, allowing for flexibility and movement in multiple directions. Hinge joints (A) enable movement in one plane, akin to a door hinge. Ball-and-socket joints (B) allow for a wide range of motion across multiple directions. Saddle joints (D) facilitate movement in two planes.
4. Which of the following correctly identifies a difference between the primary and secondary immune response?
- A. In the secondary response, macrophages migrate to the lymph nodes to present the foreign microorganism to helper T lymphocytes.
- B. The humoral immunity that characterizes the primary response is coordinated by B lymphocytes.
- C. The primary response is quicker and more powerful than the secondary response.
- D. Suppressor T cells are activated in the secondary response to prevent an overactive immune response.
Correct answer: C
Rationale: The correct answer is C. The primary immune response is slower and less powerful compared to the secondary immune response. During the primary response, immune cells encounter the antigen for the first time, necessitating the activation and proliferation of specific immune cells. In contrast, the secondary response benefits from memory cells that quickly recognize the antigen, enabling a faster and more potent immune response. Choices A, B, and D are incorrect. While macrophages play a role in presenting antigens to T cells, this is not a defining difference between primary and secondary responses. Humoral immunity involves B lymphocytes in both primary and secondary responses, so it does not differentiate the two. Suppressor T cells primarily function to regulate the immune response but are not a key factor distinguishing primary from secondary responses.
5. How can a single gene mutation lead to multiple phenotypes depending on the organism?
- A. Pleiotropy describes the effect of one gene influencing multiple seemingly unrelated traits.
- B. Epigenetics involves environmental factors modifying gene expression without altering the DNA sequence.
- C. Genetic drift refers to random changes in allele frequencies within a population.
- D. Gene regulation controls the timing and level of gene expression within an organism.
Correct answer: A
Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access