ATI TEAS 7
TEAS Practice Test Science
1. What is the function of the rib cage in the human body?
- A. To protect the digestive organs
- B. To protect the lungs and heart
- C. To support movement
- D. To regulate body temperature
Correct answer: B
Rationale: The rib cage plays a crucial role in protecting vital organs, specifically the lungs and heart, from external injuries. Choice A is incorrect because the rib cage does not primarily protect the digestive organs. Choice C is incorrect as the primary function of the rib cage is not to support movement, but to protect internal organs. Choice D is incorrect as regulating body temperature is not a function typically associated with the rib cage.
2. If you compare a 1 M solution of NaCl to a 1 M solution of glucose (C6H12O6) in water, which solution would have the higher boiling point?
- A. The NaCl solution
- B. The glucose solution
- C. They would have the same boiling point
- D. It depends on the temperature
Correct answer: A
Rationale: 1. Boiling point elevation: When a solute is added to a solvent, it raises the boiling point of the solution compared to the pure solvent. This phenomenon is known as boiling point elevation. 2. Van't Hoff factor: The extent of boiling point elevation depends on the number of particles the solute dissociates into in the solution. NaCl dissociates into two ions (Na+ and Cl-) in water, while glucose does not dissociate into ions. Therefore, NaCl has a higher Van't Hoff factor than glucose. 3. Colligative properties: Boiling point elevation is a colligative property, meaning it depends on the concentration of the solute particles, not the identity of the solute. Since both NaCl and glucose are 1 M solutions, the NaCl solution will have a higher boiling point due to its higher Van't Hoff factor. 4. Conclusion: The NaCl solution
3. What is the unit of measurement for momentum?
- A. Newton-second (N·s)
- B. Kilogram-meter (kg·m)
- C. Joule (J)
- D. Meter per second (m/s)
Correct answer: A
Rationale: The correct unit of measurement for momentum is Newton-second (N·s). Momentum is calculated as the product of an object's mass and its velocity. The unit of mass is kilograms (kg) and the unit of velocity is meters per second (m/s). Therefore, the unit of momentum is kilogram-meter per second (kg·m/s). By Newton's second law of motion (F = ma), force is measured in Newtons (N), which is equivalent to kg·m/s². Multiplying the unit of force (N) by the unit of time (s) gives the unit of momentum as Newton-second (N·s). Choice B, Kilogram-meter (kg·m), is incorrect because it represents the unit of work or energy, not momentum. Choice C, Joule (J), is incorrect as it is a unit of energy. Choice D, Meter per second (m/s), is incorrect as it represents velocity alone, not momentum which is a vector quantity involving mass and velocity.
4. How does urine flow through the urethra?
- A. Continuously
- B. Only when the bladder is completely full
- C. Under voluntary control of sphincter muscles
- D. A combination of B and C
Correct answer: C
Rationale: Urine flows through the urethra under voluntary control of sphincter muscles. These muscles can be consciously contracted or relaxed to control the flow of urine from the bladder to the outside of the body. Choice A is incorrect as urine flow is not continuous but rather regulated. Choice B is incorrect because urine flow is not restricted to only when the bladder is completely full. Choice D is incorrect as it inaccurately combines the two incorrect statements of choices B and C.
5. What is the term for the process of breaking a large molecule into smaller fragments by applying heat?
- A. Polymerization
- B. Hydrogenation
- C. Isomerization
- D. Pyrolysis
Correct answer: D
Rationale: Pyrolysis is the correct answer. It is the process of breaking down large molecules into smaller fragments by applying heat in the absence of oxygen. This results in the decomposition of molecules into simpler compounds. Polymerization, the process of synthesizing large molecules from smaller units, is incorrect as it is the opposite process. Hydrogenation involves adding hydrogen atoms to a compound, usually with a catalyst, which is not related to breaking down large molecules. Isomerization refers to rearranging atoms within a molecule to form isomeric compounds with the same molecular formula but different structural arrangements, which is also unrelated to the process described in the question.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access