ATI TEAS 7
ati teas 7 science
1. What is the name of the structure that packages DNA in eukaryotic cells?
- A. Nucleosome
- B. Chromatin
- C. Histone
- D. Centromere
Correct answer: A
Rationale: - A nucleosome is the basic structural unit of DNA packaging in eukaryotic cells. It consists of DNA wrapped around a core of histone proteins. - Chromatin refers to the complex of DNA and proteins found in the nucleus of a eukaryotic cell, including nucleosomes. - Histones are the proteins around which DNA is wrapped to form nucleosomes. - Centromere is a region of a chromosome where the two sister chromatids are joined and to which spindle fibers attach during cell division.
2. Why is the electrical conductivity of a strong acid solution higher than that of a weak acid solution?
- A. Strong acids are more concentrated.
- B. Strong acids release more hydrogen ions.
- C. Weak acids are better at dissolving salts.
- D. Strong acids have a lower pH.
Correct answer: B
Rationale: The correct answer is B because strong acids release more hydrogen ions compared to weak acids. This higher concentration of ions in the solution leads to a higher electrical conductivity. Strong acids ionize completely in solution, producing a higher concentration of ions that can conduct electricity, whereas weak acids only partially ionize, resulting in a lower concentration of ions and lower electrical conductivity. Choice A is incorrect because the concentration of the acid does not directly determine its electrical conductivity. Choice C is incorrect as the ability to dissolve salts is not directly related to electrical conductivity. Choice D is incorrect because the pH of the solution, although related to acidity, does not directly determine the electrical conductivity.
3. Which of the following is NOT one of the major types of bones in the human body?
- A. Dense bone
- B. Long bone
- C. Short bone
- D. Irregular bone
Correct answer: A
Rationale: The correct answer is A: 'Dense bone'. Dense bone is not a classification of bone types in the human body. The major types of bones include long, short, flat, and irregular bones. Long bones, like the femur, are characterized by being longer than they are wide. Short bones, such as those in the wrist (carpals) and ankle (tarsals), are generally cube-shaped. Flat bones, like the skull or scapula, are thin and provide protection. Irregular bones, such as the vertebrae, have complex shapes that do not fit into the other categories.
4. Which of the following correctly identifies a difference between the primary and secondary immune response?
- A. In the secondary response, macrophages migrate to the lymph nodes to present the foreign microorganism to helper T lymphocytes.
- B. The humoral immunity that characterizes the primary response is coordinated by B lymphocytes.
- C. The primary response is quicker and more powerful than the secondary response.
- D. Suppressor T cells are activated in the secondary response to prevent an overactive immune response.
Correct answer: C
Rationale: The correct answer is C. The primary immune response is slower and less powerful compared to the secondary immune response. During the primary response, immune cells encounter the antigen for the first time, necessitating the activation and proliferation of specific immune cells. In contrast, the secondary response benefits from memory cells that quickly recognize the antigen, enabling a faster and more potent immune response. Choices A, B, and D are incorrect. While macrophages play a role in presenting antigens to T cells, this is not a defining difference between primary and secondary responses. Humoral immunity involves B lymphocytes in both primary and secondary responses, so it does not differentiate the two. Suppressor T cells primarily function to regulate the immune response but are not a key factor distinguishing primary from secondary responses.
5. How does kinetic energy change when the velocity of an object is doubled?
- A. Kinetic energy is halved
- B. Kinetic energy quadruples
- C. Kinetic energy doubles
- D. Kinetic energy remains the same
Correct answer: B
Rationale: Kinetic energy is directly proportional to the square of the velocity of an object according to the kinetic energy formula (KE = 0.5 * m * v^2). When the velocity is doubled, the kinetic energy increases by a factor of 2^2 = 4. Therefore, the kinetic energy quadruples when the velocity of an object is doubled. Choice A is incorrect because halving the kinetic energy would be the result if the velocity was halved, not doubled. Choice C is incorrect because doubling the velocity would result in a fourfold increase in kinetic energy, not just a double. Choice D is incorrect because kinetic energy is directly related to the velocity of an object, so if the velocity changes, the kinetic energy changes accordingly.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access