ATI TEAS 7
TEAS 7 science quizlet
1. What is the relationship between genetic drift and the founder effect?
- A. Founder effect is a cause of genetic drift within a small population
- B. Genetic drift is a cause of the founder effect in new populations
- C. They are the same phenomenon with different names
- D. They are unrelated concepts.
Correct answer: A
Rationale: - The founder effect is a specific type of genetic drift that occurs when a small group of individuals establishes a new population, leading to a loss of genetic variation. - Genetic drift, on the other hand, is a broader concept that refers to random changes in allele frequencies in a population over time due to chance events. - Therefore, the founder effect is a specific scenario within the broader concept of genetic drift, where the establishment of a new population by a small number of individuals leads to genetic changes in the population.
2. Which of the following is an example of an unsaturated fatty acid?
- A. Stearic acid
- B. Palmitic acid
- C. Oleic acid
- D. Butyric acid
Correct answer: C
Rationale: Oleic acid is an example of an unsaturated fatty acid because it contains one or more double bonds in its hydrocarbon chain, leading to kinks in the chain structure. This unsaturation gives it a lower melting point compared to saturated fatty acids. Stearic acid (A), Palmitic acid (B), and Butyric acid (D) are examples of saturated fatty acids as they do not contain any double bonds in their hydrocarbon chains, leading to a straight structure and higher melting points.
3. How do spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints?
- A. Misaligned chromosomes fail to attach to microtubules, triggering a delay in anaphase onset.
- B. The presence of unattached kinetochores on the centromeres sends a signal to pause cell cycle progression.
- C. Microtubule instability and rapid depolymerization lead to the activation of checkpoint proteins.
- D. All of the above.
Correct answer: D
Rationale: A) Misaligned chromosomes fail to attach to microtubules, triggering a delay in anaphase onset: Proper attachment of chromosomes to spindle fibers is essential for accurate segregation of genetic material during cell division. Misaligned chromosomes that fail to attach to microtubules can lead to delays in anaphase onset, allowing the cell to correct errors before proceeding with division. B) The presence of unattached kinetochores on the centromeres sends a signal to pause cell cycle progression: Kinetochores at the centromeres help attach chromosomes to spindle fibers. When kinetochores are unattached or improperly attached to microtubules, they signal the cell to pause cell cycle progression, ensuring proper chromosome alignment before division. C) Microtubule instability and rapid depolymerization lead to the activation of checkpoint proteins: While microtubule dynamics are crucial for cell division, microtubule instability and rapid depolymerization can disrupt chromosome attachment. However, this mechanism is not directly related to the activation of cell cycle checkpoint proteins, making this statement incorrect. Therefore, choices A and B accurately describe how spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints, making option D the correct answer.
4. A ball is rolling across the floor and comes to a stop on its own. What force caused the ball to stop?
- A. Gravitational force
- B. Normal force from the floor
- C. Air resistance
- D. None of the above
Correct answer: C
Rationale: The force that caused the ball to stop rolling across the floor is air resistance. As the ball moves through the air, air resistance acts in the opposite direction of its motion, gradually slowing it down until it comes to a stop. In this scenario, the ball is not in contact with the floor, so the normal force from the floor does not play a role in stopping the ball. Gravitational force acts to pull objects towards the center of the Earth and would not directly stop the ball in this situation. Therefore, air resistance is the force that opposes the motion of the rolling ball and causes it to come to a stop.
5. What happens to the force of gravity between two objects when the distance between them is doubled?
- A. The force increases by a factor of 2
- B. The force increases by a factor of 4
- C. The force decreases by a factor of 2
- D. The force decreases by a factor of 4
Correct answer: D
Rationale: According to the law of universal gravitation, the force of gravity between two objects is inversely proportional to the square of the distance between them. When the distance is doubled, the force decreases by a factor of 2 squared, which is 4. Therefore, the force decreases by a factor of 4. Choice A is incorrect because the force doesn't increase when the distance is doubled. Choice B is incorrect as the force doesn't increase but actually decreases. Choice C is incorrect as the force decreases by a factor of 4, not 2.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access