ATI TEAS 7
ati teas 7 science
1. What is the recommended daily fiber intake for adults?
- A. 10 grams
- B. 25 grams
- C. 35 grams
- D. 50 grams
Correct answer: B
Rationale: The recommended daily fiber intake for adults is around 25 grams for women and 38 grams for men. Fiber is essential for maintaining a healthy digestive system, preventing constipation, and reducing the risk of chronic diseases such as heart disease and diabetes. Consuming an adequate amount of fiber can also help with weight management and promote overall well-being. Option B is the correct answer based on the recommended daily intake guidelines for adults. Choices A, C, and D are incorrect because they do not align with the established guidelines for fiber intake in adults. 10 grams (choice A) is too low, 35 grams (choice C) is higher than the general recommendation, and 50 grams (choice D) is significantly above the recommended intake, which may lead to digestive issues in some individuals.
2. How can a single gene mutation lead to multiple phenotypes depending on the organism?
- A. Pleiotropy describes the effect of one gene influencing multiple seemingly unrelated traits.
- B. Epigenetics involves environmental factors modifying gene expression without altering the DNA sequence.
- C. Genetic drift refers to random changes in allele frequencies within a population.
- D. Gene regulation controls the timing and level of gene expression within an organism.
Correct answer: A
Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.
3. What is the diastole cycle in the heart?
- A. Relaxation of the heart
- B. Contraction of the heart
- C. Pulse rate of the heart
- D. Blood circulation
Correct answer: A
Rationale: The diastole cycle in the heart refers to the relaxation phase, where the heart chambers relax and fill with blood. This phase is crucial for the heart to refill and prepare for the next contraction (systole), which pumps blood out of the heart. Therefore, the correct answer is choice A, 'Relaxation of the heart.' Choices B, C, and D are incorrect in the context of cardiac physiology. Choice B, 'Contraction of the heart,' refers to systole, the phase of heart contraction. Choice C, 'Pulse rate of the heart,' is related to the number of heartbeats per minute, not the diastole cycle specifically. Choice D, 'Blood circulation,' is a broader term that encompasses the entire circulatory system rather than focusing on the heart's specific relaxation phase.
4. How does meiosis differ from mitosis?
- A. Meiosis is used for repairing the body. Mitosis is used for cell reproduction.
- B. Meiosis is used for sexual reproduction. Mitosis is used for asexual reproduction.
- C. Meiosis occurs in various organisms. Mitosis occurs in various organisms.
- D. Meiosis produces cells that are genetically different. Mitosis produces cells that are genetically identical.
Correct answer: D
Rationale: Meiosis is the process of cell division that results in the formation of sex cells (gametes) with only half the number of chromosomes as the parent cell, leading to genetically different cells. In contrast, mitosis is a cell division process that produces two daughter cells that are genetically identical to each other and the parent cell, maintaining the same chromosome number. Therefore, the correct answer is D, as meiosis and mitosis differ in their genetic outcomes - meiosis results in genetic diversity, while mitosis maintains genetic identity. Choices A, B, and C are incorrect because they do not accurately distinguish between meiosis and mitosis. Meiosis is not used for repairing the body or asexual reproduction, and the occurrence of both processes in various organisms does not highlight their primary differences in genetic outcomes.
5. How does AIDS impair the immune system?
- A. AIDS targets and destroys Helper T-Cells, preventing the activation of Cytotoxic T-Cells or B-Cells.
- B. IgE stimulates mast cells to release excessive histamine.
- C. IgE inhibits mast cells from releasing sufficient histamine.
- D. Helper T-Cells deceive the body into attacking itself.
Correct answer: A
Rationale: AIDS targets and destroys Helper T-Cells, which play a crucial role in coordinating the immune response. By affecting these cells, AIDS prevents the activation of other important immune cells like Cytotoxic T-Cells or B-Cells. This disruption in the immune system's communication and response mechanisms leads to immune system failure and increased vulnerability to infections. Choices B and C are incorrect because they refer to the role of IgE in allergic reactions, which is not directly related to how AIDS impairs the immune system. Choice D is also incorrect as Helper T-Cells being destroyed in AIDS is not about deceiving the body into attacking itself, but rather the direct impact on immune system function.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access