ATI TEAS 7
TEAS 7 science practice questions
1. What is the difference between mass and weight?
- A. Mass is the amount of matter in an object, whereas weight is the force of gravity acting on an object.
- B. Mass is a measure of inertia, whereas weight is a measure of the force of gravity acting on an object.
- C. Mass is measured in pounds, whereas weight is measured in kilograms.
- D. Mass is a vector quantity, whereas weight is a scalar quantity.
Correct answer: A
Rationale: Mass is the amount of matter in an object and is a scalar quantity, whereas weight is the force of gravity acting on an object and is a vector quantity. Mass remains constant regardless of the location, while weight can vary depending on the strength of gravity at different locations. Answer choice A correctly defines the difference between mass and weight, making it the correct answer. Choice B is incorrect because mass is not a measure of inertia. Choice C is incorrect as mass is typically measured in kilograms, not pounds. Choice D is incorrect as mass is a scalar quantity, and weight is a vector quantity.
2. Which of the following is NOT a mechanism that can directly cause evolution by natural selection?
- A. Mutations in genes
- B. Differential survival and reproduction based on traits
- C. Inheritance of acquired characteristics (like strong muscles from working out)
- D. Competition for resources in an environment
Correct answer: C
Rationale: A) Mutations in genes can introduce new genetic variations into a population, which can be acted upon by natural selection. B) Differential survival and reproduction based on traits is a key component of natural selection, as individuals with advantageous traits are more likely to survive and pass on their genes to the next generation. C) Inheritance of acquired characteristics, also known as Lamarckism, is not a mechanism of evolution by natural selection. Traits acquired during an individual's lifetime (such as strong muscles from working out) are not passed on to offspring. D) Competition for resources in an environment can drive natural selection by favoring individuals with traits that help them better compete for limited resources. Therefore, the correct answer is C) Inheritance of acquired characteristics (like strong muscles from working out), as it is not a mechanism that can directly cause evolution by natural selection.
3. What happens to the frequency of a wave when its wavelength is doubled, assuming the speed remains constant?
- A. Frequency remains the same.
- B. Frequency is halved.
- C. Frequency is doubled.
- D. Frequency information is insufficient to determine.
Correct answer: B
Rationale: When the wavelength of a wave is doubled, and the speed of the wave remains constant, the frequency of the wave is halved. This relationship is governed by the equation speed = frequency x wavelength. Therefore, if the wavelength is doubled while the speed remains constant, the frequency must be halved to maintain a constant speed. Choice A is incorrect because frequency and wavelength are inversely proportional when speed is constant. Choice C is incorrect as doubling the wavelength does not result in a doubled frequency. Choice D is incorrect as the relationship between frequency, wavelength, and speed can be determined using the given information.
4. What two factors enable some intercellular chemical signals to diffuse across cell membranes and bind to intracellular receptors?
- A. They are small and soluble.
- B. They are large and soluble.
- C. They are small and insoluble.
- D. They are large and insoluble.
Correct answer: A
Rationale: The correct answer is A: 'They are small and soluble.' Small and soluble molecules can easily pass through cell membranes and bind to intracellular receptors. Being small allows them to pass through the membrane, while being soluble enables them to dissolve in the aqueous environment inside the cell. Choice B is incorrect because large molecules typically cannot pass through the cell membrane easily. Choices C and D are incorrect because insoluble molecules would not dissolve in the aqueous environment inside the cell, hindering their ability to bind to intracellular receptors.
5. Which of the following is a true statement about dominance in genetics?
- A. All genes adhere to Mendel’s law of dominance.
- B. A dominant allele will always be expressed.
- C. When two dominant alleles are present, the resulting phenotype will express both traits.
- D. There are three or more alleles possible for all genes.
Correct answer: B
Rationale: In genetics, dominance refers to the relationship between two different alleles of a gene where one allele (dominant) masks the expression of another allele (recessive) in an individual's phenotype. The correct statement about dominance is that a dominant allele will always be expressed in the phenotype, even in the presence of a recessive allele. This means that if an individual has at least one dominant allele for a particular trait, that trait will be expressed. Choice A is incorrect because not all genes follow Mendel’s law of dominance; exceptions do exist. Choice C is incorrect because when two dominant alleles are present, only one will be expressed due to complete dominance. Choice D is incorrect as there can be more than three alleles for a gene, and not all genes have three or more alleles.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access