what is the difference between constructive and destructive interference of waves
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 science practice

1. What is the difference between constructive and destructive interference of waves?

Correct answer: B

Rationale: Constructive interference and destructive interference are two phenomena that occur when waves interact. Constructive interference leads to an increase in wave amplitude when two waves meet in phase, resulting in the alignment of peaks and troughs. This alignment results in the combined wave having a higher amplitude. On the other hand, destructive interference causes a decrease in amplitude as two waves meet out of phase, leading to their cancellation. When peaks align with troughs, they cancel each other out, resulting in a lower overall amplitude. This difference in effect on wave amplitude distinguishes between constructive and destructive interference. Choice A is incorrect because it does not specify the direction of change in amplitude for each type of interference. Choice C is incorrect as both constructive and destructive interference can occur in various types of waves, not affecting them differently based on wave type. Choice D is incorrect because while the relative phase of waves does determine the interference type, it is the amplitude that is affected by constructive and destructive interference, not the wave speed.

2. Which hormone stimulates the release of pancreatic enzymes and bile?

Correct answer: C

Rationale: Cholecystokinin (CCK) is the correct answer. It is the hormone that stimulates the release of pancreatic enzymes and bile. CCK is released by the small intestine in response to the presence of fats and proteins in the duodenum, triggering the release of digestive enzymes and bile to aid in the digestion of fats and proteins. Gastrin (Choice A) primarily stimulates gastric acid secretion, not the release of pancreatic enzymes and bile. Insulin (Choice B) regulates blood sugar levels by promoting glucose uptake. Glucagon (Choice D) raises blood glucose levels by stimulating the breakdown of glycogen in the liver.

3. Two objects with equal masses collide head-on, both initially moving at the same speed. After the collision, they stick together. What is their final velocity?

Correct answer: C

Rationale: In an inelastic collision where two objects stick together after colliding, momentum is conserved. Since the two objects have equal masses and equal initial velocities but opposite directions, their momenta cancel out. Therefore, after the collision, the combined mass will move at the same speed as the initial velocity, but in the direction of one of the objects. Choice A ('Zero') is incorrect because momentum is conserved, and the objects must move after the collision. Choice B ('Half their initial velocity') is incorrect as the final velocity is the same as the initial velocity due to momentum conservation. Choice D ('Twice their initial velocity') is incorrect as the final velocity cannot be twice the initial velocity based on the conservation of momentum principle.

4. What is the formula to calculate gravitational potential energy near the Earth's surface?

Correct answer: D

Rationale: The correct formula to calculate gravitational potential energy near the Earth's surface is Potential Energy = Mass × Acceleration due to gravity × Height. This formula considers the mass of the object, the specific acceleration due to gravity near the Earth's surface (approximately 9.81 m/s^2), and the vertical distance from the reference point. Choice A is incorrect as it does not include height in the formula. Choice B is incorrect as it involves force instead of acceleration due to gravity. Choice C is incorrect as it multiplies mass, height, and gravity, missing the actual acceleration due to gravity term.

5. What is the law that states energy can neither be created nor destroyed?

Correct answer: B

Rationale: The correct answer is the Law of Conservation of Energy. This law states that energy cannot be created or destroyed, only transformed from one form to another. The Law of Conservation of Matter (Choice A) is related to mass and the preservation of mass in a closed system, not energy. The Law of Universal Gravitation (Choice C) describes the force of attraction between objects with mass. The Law of Inertia (Choice D) states that an object will remain at rest or in uniform motion unless acted upon by an external force.

Similar Questions

Which property of matter remains constant regardless of changes in gravity?
Which of the following has a smaller genetic scale than a chromosome?
What is the main function of valence electrons in chemical bonding?
Which of the following is an example of the location and function of cartilage in the body?
What is the function of a cell wall?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses