ATI TEAS 7
Mometrix TEAS 7 science practice test
1. Which enzyme plays a crucial role in DNA replication during the S phase of interphase?
- A. Helicase
- B. DNA polymerase
- C. Ligase
- D. Topoisomerase
Correct answer: B
Rationale: During the S phase of interphase, DNA replication takes place. DNA polymerase is the enzyme responsible for synthesizing new DNA strands by adding nucleotides in a complementary manner to the template strand. It plays a pivotal role in accurately replicating the entire genome. While helicase unwinds the double-stranded DNA for replication, topoisomerase relieves the tension in the DNA strands, and ligase joins the Okazaki fragments on the lagging strand. However, DNA polymerase directly participates in the synthesis of new DNA strands during replication, making it the correct answer.
2. What happens during expiration?
- A. The diaphragm contracts and the thoracic cavity expands.
- B. The diaphragm relaxes and the thoracic cavity contracts.
- C. The thoracic cavity expands, increasing pressure.
- D. The diaphragm relaxes and moves upward.
Correct answer: B
Rationale: The correct answer is B. During expiration, the diaphragm relaxes, causing the thoracic cavity to contract. As the thoracic cavity decreases in size, the pressure inside the lungs increases, leading to air flowing out of the lungs. This process helps to expel carbon dioxide-rich air from the body. Choices A, C, and D are incorrect. In choice A, the diaphragm contracting and the thoracic cavity expanding describes inspiration, not expiration. Choice C is incorrect because during expiration, the thoracic cavity actually decreases in size. Choice D is incorrect as the diaphragm moving upward is not a typical movement associated with expiration.
3. Which type of joint allows for rotational movement around a single axis?
- A. Ball-and-socket joint
- B. Pivot joint
- C. Hinge joint
- D. Saddle joint
Correct answer: B
Rationale: The correct answer is a Pivot joint. A pivot joint, like the joint in the neck, enables rotational movement around a single axis. This type of joint is crucial for allowing the head to turn from side to side. Choice A, Ball-and-socket joint, allows for movement in multiple axes due to its spherical structure, not limited to single-axis rotation. Choice C, Hinge joint, allows movement in one plane like a door hinge, but not rotational movement around a single axis. Choice D, Saddle joint, allows movement in multiple directions but is not specifically designed for rotational movement around a single axis.
4. Which of the following statements regarding heart valves is correct?
- A. The atrioventricular valves lie between the atria and the ventricles.
- B. The pulmonary semilunar valve lies between the right ventricle and the pulmonary trunk.
- C. The atrioventricular valves prevent backflow into the atria when the ventricles contract.
- D. All of the above
Correct answer: D
Rationale: All of the statements are correct regarding heart valves. Choice A is accurate as the atrioventricular valves indeed lie between the atria and the ventricles. Choice B correctly identifies the location of the pulmonary semilunar valve. Choice C is true as the atrioventricular valves do prevent backflow into the atria during ventricular contraction. Therefore, selecting 'All of the above' as the correct answer is appropriate as all statements are accurate.
5. Which property of a wave remains constant when the wave enters a different medium?
- A. Frequency
- B. Wavelength
- C. Amplitude
- D. Speed
Correct answer: A
Rationale: When a wave enters a different medium, its frequency remains constant. Frequency is an intrinsic property of the wave determined by its source, and it does not change when transitioning between different mediums. On the other hand, wavelength, amplitude, and speed of the wave can all be altered when the wave moves from one medium to another. Wavelength is dependent on the speed of the wave and can change when entering a different medium due to differences in propagation speed. Amplitude can also change as it is influenced by factors like energy loss or gain at the boundary of the mediums. Speed, determined by the medium's properties, typically changes when a wave transitions between different mediums due to variations in the medium's density and elasticity.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access