ATI TEAS 7
ATI TEAS 7 science review
1. How do vaccines stimulate the immune system to develop memory without causing full-blown illness? What type of molecule in a vaccine typically triggers the immune response?
- A. Toxins produced by the pathogen
- B. Live, attenuated (weakened) forms of the pathogen
- C. Inactivated (dead) forms of the pathogen
- D. Antigens (specific molecules) from the pathogen
Correct answer: D
Rationale: Vaccines work by triggering the immune system to develop memory without causing illness. They typically contain antigens, which are specific molecules from the pathogen. These antigens stimulate the immune system to produce a targeted immune response without causing full-blown sickness. By presenting these antigens, vaccines help the immune system create memory cells that remember the pathogen. This memory allows the immune system to respond more effectively if it encounters the pathogen in the future. Choices A, B, and C are incorrect because vaccines do not typically contain toxins, live pathogens, or inactivated forms of the pathogen. Instead, vaccines primarily rely on specific molecules (antigens) to induce an immune response.
2. When testing how quickly a rat dies based on the amount of poison it eats, which of the following is the independent variable and which is the dependent variable?
- A. How quickly the rat dies is the independent variable; the amount of poison is the dependent variable.
- B. The amount of poison is the independent variable; how quickly the rat dies is the dependent variable.
- C. Whether the rat eats the poison is the independent variable; how quickly the rat dies is the dependent variable.
- D. The cage the rat is kept in is the independent variable; the amount of poison is the dependent variable.
Correct answer: B
Rationale: The correct answer is B. In this experiment, the independent variable is the amount of poison because it is what is being manipulated by the researcher. The dependent variable is how quickly the rat dies, as it is the outcome that is being measured based on the different amounts of poison administered. Choice A is incorrect because the independent variable should be what is being manipulated or changed, which is the amount of poison in this case. Choice C is incorrect because whether the rat eats the poison is not being varied or controlled by the researcher. Choice D is incorrect because the cage the rat is kept in is not relevant to the relationship being studied between the amount of poison and the rat's survival time.
3. Which type of muscle tissue is found in the walls of blood vessels and helps regulate blood flow?
- A. Skeletal muscle
- B. Smooth muscle
- C. Cardiac muscle
- D. Striated muscle
Correct answer: B
Rationale: Smooth muscle is the correct answer. It is found in the walls of blood vessels and helps regulate blood flow by contracting and relaxing to adjust the diameter of the vessels. Skeletal muscle, found attached to bones, is responsible for voluntary movements and is not typically found in blood vessel walls. Cardiac muscle is specific to the heart and responsible for pumping blood, not found in blood vessel walls. Striated muscle, another term for skeletal muscle, is characterized by its striped appearance under a microscope but is not present in blood vessel walls.
4. What is the relationship between the wavelength (λ) and frequency (f) of a wave with a constant speed (v)?
- A. λ = v / f
- B. λ = f / v
- C. λ = vf
- D. λ is independent of f and v
Correct answer: A
Rationale: The relationship between wavelength (λ), frequency (f), and speed (v) of a wave is given by the formula λ = v / f. This formula is derived from the wave equation v = fλ, where v is the speed of the wave, f is the frequency, and λ is the wavelength. By rearranging the equation, we get λ = v / f, indicating that the wavelength is inversely proportional to the frequency when the speed of the wave is constant. Therefore, choice A, λ = v / f, correctly represents the relationship between wavelength and frequency when the speed of the wave is held constant. Choice B, λ = f / v, is incorrect because it represents an inverse relationship between wavelength and speed, which is not the case. Choice C, λ = vf, is incorrect as it implies a direct relationship between wavelength, frequency, and speed, which is not accurate. Choice D, λ is independent of f and v, is incorrect as both frequency and speed affect the wavelength of a wave, as shown by the correct formula λ = v / f.
5. How many kilograms are in 1,800 grams?
- A. 0.18
- B. 1.8
- C. 18
- D. 180
Correct answer: B
Rationale: To convert grams to kilograms, divide by 1,000 since there are 1,000 grams in a kilogram. Therefore, 1,800 grams is equal to 1.8 kilograms (1,800 / 1,000 = 1.8). Choice A (0.18) is incorrect because it incorrectly shifted the decimal point. Choice C (18) is incorrect as it represents the direct conversion without dividing by 1,000. Choice D (180) is incorrect as it is in the hundreds and not the correct conversion to kilograms. The correct answer is B.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access