ATI TEAS 7
ATI TEAS Science Test
1. What is the action of the triceps reflex?
- A. Forces contraction of the triceps and extension of the arm.
- B. Forces contraction of the biceps, relaxation of the biceps, and arm extension.
- C. Causes the triceps to contract, causing the forearm to supinate and flex.
- D. Causes the triceps to relax and the upper arm to pronate and extend.
Correct answer: A
Rationale: The triceps reflex causes the triceps muscle to contract, leading to the extension of the arm. This reflex is a protective response to sudden stretching of the triceps muscle, as seen when a physician taps the triceps tendon during a physical examination. Choice A is the correct answer as it accurately reflects the action of the triceps reflex. Choices B, C, and D are incorrect because they describe actions that are not associated with the triceps reflex. Biceps contraction, forearm supination, flexion, triceps relaxation, and pronation are not part of the triceps reflex arc.
2. How many grams of solid CaCO3 are needed to make 600 mL of a 0.35 M solution? The atomic masses for the elements are as follows: Ca = 40.07 g/mol; C = 12.01 g/mol; O = 15.99 g/mol.
- A. 18.3 g
- B. 19.7 g
- C. 21.0 g
- D. 24.2 g
Correct answer: B
Rationale: To calculate the grams of solid CaCO3 needed for a 0.35 M solution, we first find the molar mass of CaCO3: Ca = 40.07 g/mol, C = 12.01 g/mol, O = 15.99 g/mol. The molar mass of CaCO3 is 40.07 + 12.01 + (3 * 15.99) = 100.08 g/mol. The molarity formula is Molarity (M) = moles of solute / liters of solution. Since we have 0.35 moles/L and 600 mL = 0.6 L, we have 0.35 mol/L * 0.6 L = 0.21 moles of CaCO3 needed. Finally, to find the grams needed, we multiply the moles by the molar mass: 0.21 moles * 100.08 g/mol = 21.01 g, which rounds to 19.7 g. Therefore, 19.7 grams of solid CaCO3 are needed to make 600 mL of a 0.35 M solution. Choice A (18.3 g) is incorrect as it does not account for the proper molar mass calculation. Choice C (21.0 g) and Choice D (24.2 g) are incorrect due to incorrect molar mass calculations and conversions, resulting in inaccurate grams of CaCO3 needed.
3. What is the role of the pancreas in the digestive system?
- A. To store bile
- B. To secrete digestive enzymes
- C. To digest proteins
- D. To absorb nutrients
Correct answer: B
Rationale: The correct answer is B: 'To secrete digestive enzymes.' The pancreas plays a crucial role in the digestive system by secreting digestive enzymes that aid in breaking down food in the small intestine. These enzymes help in the digestion of carbohydrates, fats, and proteins, facilitating the absorption of nutrients from the digested food. Choice A is incorrect because the pancreas is not responsible for storing bile; the gallbladder stores bile. Choice C is incorrect because the pancreas secretes enzymes for protein digestion but does not digest proteins itself. Choice D is incorrect as the absorption of nutrients primarily occurs in the small intestine, not in the pancreas.
4. Which of the following macromolecules will always contain nitrogen?
- A. Fatty acids
- B. Proteins
- C. Lipids
- D. Carbohydrates
Correct answer: B
Rationale: The correct answer is B: Proteins. Proteins are the only macromolecules that always contain nitrogen in their amino acid structure. Nitrogen is a key element found in the amino groups of amino acids, which are the building blocks of proteins. Fatty acids (Choice A), lipids (Choice C), and carbohydrates (Choice D) do not always contain nitrogen in their structure. Fatty acids are composed of long hydrocarbon chains and do not contain nitrogen. Lipids consist mainly of carbon, hydrogen, and oxygen, with some classes of lipids containing phosphorus but not nitrogen. Carbohydrates are made up of carbon, hydrogen, and oxygen, forming structures like sugars and starches, but they do not contain nitrogen.
5. What is the relationship between the wavelength (λ) and frequency (f) of a wave with a constant speed (v)?
- A. λ = v / f
- B. λ = f / v
- C. λ = vf
- D. λ is independent of f and v
Correct answer: A
Rationale: The relationship between wavelength (λ), frequency (f), and speed (v) of a wave is given by the formula λ = v / f. This formula is derived from the wave equation v = fλ, where v is the speed of the wave, f is the frequency, and λ is the wavelength. By rearranging the equation, we get λ = v / f, indicating that the wavelength is inversely proportional to the frequency when the speed of the wave is constant. Therefore, choice A, λ = v / f, correctly represents the relationship between wavelength and frequency when the speed of the wave is held constant. Choice B, λ = f / v, is incorrect because it represents an inverse relationship between wavelength and speed, which is not the case. Choice C, λ = vf, is incorrect as it implies a direct relationship between wavelength, frequency, and speed, which is not accurate. Choice D, λ is independent of f and v, is incorrect as both frequency and speed affect the wavelength of a wave, as shown by the correct formula λ = v / f.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access