ATI TEAS 7
TEAS 7 practice test free science
1. What is the energy required to break a chemical bond called?
- A. Kinetic energy
- B. Potential energy
- C. Activation energy
- D. Bond energy
Correct answer: C
Rationale: Activation energy is the energy required to break a chemical bond and initiate a chemical reaction. It is the minimum amount of energy needed to start a chemical reaction by breaking bonds in the reactant molecules. Kinetic energy (option A) is the energy of motion and is not directly related to breaking chemical bonds. Potential energy (option B) is stored energy that can be converted into other forms of energy but is not specifically about breaking chemical bonds. Bond energy (option D) refers to the energy required to break a particular chemical bond in a molecule and is not the general term for the energy needed to break any chemical bond. Activation energy is crucial in determining the rate of a chemical reaction as it affects the probability of reactant molecules colliding with sufficient energy to surpass the energy barrier and form products.
2. What is the structure and function of elastic arteries?
- A. They are the smallest arteries and constrict and dilate frequently.
- B. They are medium-sized arteries that distribute blood to various organs.
- C. They are the largest arteries and stretch and recoil to accommodate blood pressure changes.
- D. They are thin-walled arteries that supply blood to the capillaries.
Correct answer: C
Rationale: The corrected answer is C. Elastic arteries, like the aorta, are the largest arteries in the body. They possess elastic fibers in their walls, allowing them to stretch and recoil in response to the pulsatile nature of blood flow from the heart. This elasticity helps to maintain blood pressure by absorbing the pressure waves generated by the heart's contractions and ensuring continuous blood flow to the organs. Choices A, B, and D are incorrect because elastic arteries are not the smallest arteries, do not constrict and dilate frequently, are not medium-sized arteries for distributing blood to various organs, and are not thin-walled arteries supplying blood to capillaries. Elastic arteries have a specific structure and function related to their ability to accommodate blood pressure changes due to their elastic properties, which is essential for the cardiovascular system's proper functioning.
3. How many pairs of chromosomes are in a human cell?
- A. 46
- B. 23
- C. 64
- D. 32
Correct answer: B
Rationale: The correct answer is B: 23. Humans have 23 pairs of chromosomes, totaling 46 chromosomes. Each pair consists of one chromosome inherited from the mother and one from the father, making a total of 46 chromosomes in a human cell. Choice A (46) is incorrect as it represents the total number of chromosomes, not pairs. Choice C (64) and D (32) are incorrect as they do not reflect the accurate number of chromosome pairs in a human cell.
4. How can a single gene mutation lead to multiple phenotypes depending on the organism?
- A. Pleiotropy describes the effect of one gene influencing multiple seemingly unrelated traits.
- B. Epigenetics involves environmental factors modifying gene expression without altering the DNA sequence.
- C. Genetic drift refers to random changes in allele frequencies within a population.
- D. Gene regulation controls the timing and level of gene expression within an organism.
Correct answer: A
Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.
5. An object is moving in a circle at constant speed. Is there a net force acting on it?
- A. Yes, always
- B. No, never
- C. Only if its speed is changing
- D. Only if its direction is changing
Correct answer: D
Rationale: When an object is moving in a circle at a constant speed, there is a net force acting on it. This net force is directed towards the center of the circle and is responsible for continuously changing the direction of the object's velocity, even though the speed remains constant. Therefore, the correct answer is D because the net force is required to change the direction of the object's motion in a circular path. Choices A, B, and C are incorrect because the presence of a net force is necessary to continuously change the object's direction as it moves in a circular path, irrespective of changes in speed.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access