ATI TEAS 7
ati teas 7 science
1. What are the constituents of an atomic nucleus?
- A. Electrons and protons only
- B. Protons and neutrons only
- C. Electrons, protons, and neutrons
- D. None of the above
Correct answer: B
Rationale: The correct answer is B: Protons and neutrons only. Electrons are located outside the nucleus in electron shells. Protons and neutrons are the subatomic particles found within the nucleus of an atom. Protons carry a positive charge, while neutrons are neutral. These particles contribute to the mass and stability of the nucleus. Choice A is incorrect because electrons are not part of the nucleus. Choice C is incorrect as electrons are not found within the nucleus, only protons and neutrons. Choice D is incorrect as protons and neutrons are indeed constituents of an atomic nucleus.
2. What is the Aufbau principle?
- A. The principle that electrons fill orbitals in order of increasing energy.
- B. The principle that electrons cannot occupy the same orbital with the same spin.
- C. The principle that the maximum number of electrons in an orbital is 2n^2, where n is the energy level of the orbital.
- D. The principle that the attractive force between an electron and the nucleus is inversely proportional to the distance between them.
Correct answer: A
Rationale: The Aufbau principle states that electrons fill orbitals in order of increasing energy. This principle helps to explain the electron configuration of atoms and how electrons are distributed within the energy levels and sublevels of an atom. By following the Aufbau principle, one can determine the electron configuration of an atom by sequentially adding electrons to orbitals in order of their increasing energy levels, starting with the lowest energy level. Choice B is incorrect as it describes the Pauli Exclusion Principle, which states that no two electrons in an atom can have the same four quantum numbers. Choice C is incorrect as it refers to the formula for calculating the maximum number of electrons that can occupy an energy level. Choice D is incorrect as it relates to Coulomb's law, which describes the electrostatic interaction between charged particles.
3. How does electron configuration relate to the periodic table?
- A. Elements within the same period have identical electron configurations.
- B. Elements within the same group share similar electron configurations in their outermost shell.
- C. Electron configuration determines an element's position on the periodic table.
- D. An element's group on the periodic table is determined by the number of electron shells it possesses.
Correct answer: B
Rationale: Elements within the same group share similar electron configurations in their outermost shell. The periodic table is organized based on the number of electrons in the outermost energy level, known as valence electrons, which significantly influence an element's chemical properties. Elements within the same group have the same number of valence electrons, leading to comparable chemical behaviors. Choices A and D are incorrect because elements within the same period, not group, have identical electron configurations, and an element's group is primarily determined by the number of valence electrons and not the number of electron shells. Choice C is incorrect because while electron configuration is crucial for understanding an element's properties, it is not the sole factor determining its position on the periodic table.
4. What is the 'lock-and-key' model?
- A. Protein folding
- B. Enzyme-substrate interaction
- C. Muscle contraction
- D. Blood clotting
Correct answer: B
Rationale: The 'lock-and-key' model describes the specificity of the interaction between enzymes and their substrates. In this model, the enzyme's active site acts like a lock that can only be opened by the specific substrate molecule, which serves as the key. This specific binding ensures that enzymes catalyze particular reactions and do not interact with other molecules indiscriminately. Protein folding (option A) is the process by which a protein attains its functional three-dimensional structure but is not directly related to the lock-and-key model. Muscle contraction (option C) and blood clotting (option D) are complex biological processes but are not directly associated with the lock-and-key model of enzyme-substrate interaction.
5. Which of the following is an example of a flat bone?
- A. Femur
- B. Scapula
- C. Humerus
- D. Tibia
Correct answer: B
Rationale: The correct answer is B, the Scapula. Flat bones, such as the scapula, are thin, flattened bones that provide protection to internal organs and serve as attachment points for muscles. The other choices, femur, humerus, and tibia, are examples of long bones, which are characterized by their elongated structure and are primarily involved in supporting weight and facilitating movement.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access