ATI TEAS 7
TEAS 7 Science Practice Test
1. The above experimental design description is an example of which of the following types of experiments?
- A. field experiment
- B. natural experiment
- C. controlled experiment
- D. observational study
Correct answer: C
Rationale: The above experimental design description involves the manipulation of an independent variable (light exposure) to observe its effects on the dependent variable (plant growth) under controlled conditions. In a controlled experiment, researchers actively manipulate one or more variables while keeping all other variables constant to establish cause-and-effect relationships. Choice A, a field experiment, typically takes place in a real-world setting but still involves manipulation and control of variables. Choice B, a natural experiment, involves observing naturally occurring differences in variables without researcher intervention. Choice D, an observational study, does not involve manipulation of variables, making it different from the described experimental design.
2. As a water wave approaches a shallow beach, what happens to its speed, wavelength, and frequency?
- A. Speed increases, wavelength decreases, frequency increases.
- B. Speed decreases, wavelength decreases, frequency remains the same.
- C. Speed increases, wavelength increases, frequency decreases.
- D. Speed, wavelength, and frequency remain the same.
Correct answer: B
Rationale: As a water wave approaches a shallow beach, the speed of the wave decreases due to the change in medium from deep to shallow water. According to the wave equation (speed = frequency x wavelength), if the speed decreases and the frequency remains the same, the wavelength must also decrease to maintain the equation balanced. This phenomenon occurs due to the wavefronts being slowed down by the shallower water, causing the wavelength to decrease while the frequency remains constant. Choice A is incorrect as the speed of the wave decreases in shallow water. Choice C is incorrect because the speed increases in deep water, not in shallow water. Choice D is incorrect as all the wave characteristics change when moving from deep to shallow water.
3. Which of the following is an example of a flat bone?
- A. Femur
- B. Scapula
- C. Humerus
- D. Tibia
Correct answer: B
Rationale: The correct answer is B, the Scapula. Flat bones, such as the scapula, are thin, flattened bones that provide protection to internal organs and serve as attachment points for muscles. The other choices, femur, humerus, and tibia, are examples of long bones, which are characterized by their elongated structure and are primarily involved in supporting weight and facilitating movement.
4. Which type of cells make up the myelin sheaths?
- A. Glial cells.
- B. Dendrites.
- C. Melanocytes.
- D. Squamous cells.
Correct answer: A
Rationale: The correct answer is A: Glial cells. Glial cells are responsible for producing the myelin sheaths that surround and insulate nerve cells in the central and peripheral nervous systems. Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system are types of glial cells that form the myelin sheaths. Choice B, dendrites, are not involved in forming myelin sheaths; they are extensions of neurons that receive signals. Choice C, melanocytes, are cells responsible for producing melanin, not myelin. Choice D, squamous cells, are flat epithelial cells found in various tissues but are not involved in myelin sheath formation.
5. What type of bond is present in salt?
- A. Ionic
- B. Nonpolar covalent
- C. Polar covalent
- D. Peptide
Correct answer: A
Rationale: The correct answer is 'Ionic.' Ionic bonds are formed in salts through the transfer of electrons between atoms, leading to the attraction between positively and negatively charged ions. This results in a stable ionic compound, such as common table salt (sodium chloride). Nonpolar covalent, polar covalent, and peptide bonds are not typically found in salts. Nonpolar covalent bonds involve the equal sharing of electrons, polar covalent bonds involve unequal sharing of electrons, and peptide bonds are specific to proteins, not salts.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access